Skip to main content
Log in

Determination of Diffusion Coefficients for Binary Nonelectrolyte Mixtures. A Free-Volume Predictive Approach

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A diaphragm cell has been used to measure mutual diffusion coefficients at 25°C for four binary nonelectrolyte mixtures: ethylbenzene + n-hexane, carbon tetrachloride + ethylbenzene, cyclohexane + p-xylene, and 1,2-dichloroethane + cyclohexane. A free-volume predictive approach for binary mutual diffusion coefficients was developed and tested. Only infinite dilution diffusion coefficients, some readily available pure substance data, and UNIFAC group contribution parameters are used in the model. No binary equilibrium thermodynamic information is required. For 73 binary systems with an overall average absolute deviation of 5.2%, it has been shown that the developed method is better than two commonly available reference methods for the prediction of liquid diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. H. Stokes, J. Am. Chem. Soc. 72, 763 (1950).

    Google Scholar 

  2. S. A. Sanini and P. J. Hutchison, J. Chem. Eng. Data 18, 317 (1973).

    Google Scholar 

  3. H. Erti, R. K. Ghai, and F. A. L. Dullien, AlChE J. 20, 1 (1974).

    Google Scholar 

  4. R. Reid, J. M. Prausnitz and B. E. Poling. The Properties of Gases and Liquids, 4th. edn., (McGraw-Hill, New York, 1987).

    Google Scholar 

  5. A. Vignes, Ind. Eng. Chem. Fundam. 5, 189 (1966).

    Google Scholar 

  6. F. A. L. Dullien, Ind. Eng. Chem. Fundam. 10, 41 (1971).

    Google Scholar 

  7. J. Leffler and H. T. Cullinan, Jr., Ind. Eng. Chem. Fundam. 4, 84 (1970).

    Google Scholar 

  8. H. T. Cullinan, Jr., Ind. Eng. Chem. Fundam. 5, 282 (1966).

    Google Scholar 

  9. F. A. L. Dullien, and A. A. Asfour, Ind. Eng. Chem. Fundam. 24, 1 (1985).

    Google Scholar 

  10. L. A. Woolf and J. F. Tiley, J. Phys. Chem. 71, 1962 (1967).

    Google Scholar 

  11. R. L. Robinson, W. C. Edminster, and F. A. L. Dullien, J. Phys. Chem. 69,258 (1965).

    Google Scholar 

  12. R. L. Robinson W. C. Edminster, and F. A. L. Dullien, Ind. Eng. Chem. Fundam. 5, 74(1967).

    Google Scholar 

  13. J. H. Zhang and J. T. Yuan, J. Chem. Ind. Eng. 45, (1987).

  14. E. P. Doan and H. G. Drickamer, J. Chem. Phys. 31, 1359 (1959).

    Google Scholar 

  15. T. M. Aminabhavi, R. H. Stokes, and R. C. Patel, Current Sci. 54, 207 (1985).

    Google Scholar 

  16. K. R. Harris, C. K. N. Pua, and P. J. Dunlop, J. Phys. Chem. 74, 3518(1970).

    Google Scholar 

  17. R. K. Ghai and F. A. L. Dullien, J. Phys. Chem. 78, 2217 (1974).

    Google Scholar 

  18. X. N. Yang, P. Sh. Ma, and H. F. Cheng, J. Chem. Ind. Eng. 45, 588 (1994).

    Google Scholar 

  19. J. H. Vera and J. M. Prausnitz, Chem. Eng. J. 3, 1 (1972).

    Google Scholar 

  20. H. Eyring, J. Chem. Phys. 4, 283(1936).

    Google Scholar 

  21. A. Fredenslund, R. L. Jones, and J. M. Prausnitz, AlChE J. 21, 1086 (1975).

    Google Scholar 

  22. M. Shao-Mu and H. Eyring, J. Phys. Chem. 42, 1920 (1965).

    Google Scholar 

  23. J. Gumehling, U. Onken, and W. Artt, Vapor-Liquid Equilibria Data Collection (DECHEMA, Frankfurt, 1980).

    Google Scholar 

  24. C. S. Caldwell and A. L. Babb, J. Phys. Chem. 60, 51 (1956).

    Google Scholar 

  25. R. W. Hanks, A. C. Gipta, and C. K. H. Yee, Thermochim Acta 23, 57 (1978).

    Google Scholar 

  26. D. M. Mccali, and D. C. Douglass, J. Phys. Chem. 71, 987 (1967).

    Google Scholar 

  27. G. Jakli, F. Ttias, and W. A. Van-Hook, J. Chem. Phys. 68, 3177 (1978).

    Google Scholar 

  28. I. Rodiwin, J. A. Harpst, and P. A. Lyons, J. Phys. Chem. 69, 278 (1965).

    Google Scholar 

  29. S. A. Sanni and P. Hatchison, J. Chem. Eng. Data 18, 317 (1973).

    Google Scholar 

  30. D. D. Deshpande and C. S. Prabh, Indian J. Chem. 16A, 95 (1978).

    Google Scholar 

  31. T. Ohta and I. Nagata, J. Chem. Eng. Data 25, 283 (1980).

    Google Scholar 

  32. T. M. Aminabhavi and P. J. Munk, J. Phys. Chem. 84, 442 (1980).

    Google Scholar 

  33. B. S. Harsted and E. S. Thomsen, J. Chem. Thermodyn. 7, 369 (1975).

    Google Scholar 

  34. S. Bernatora and T. Boubltk, Collect. Czech. Chem. Commun. 42(9), 2615 (1977).

    Google Scholar 

  35. M. A. Siddiqi, W. Krahn, and K. Lucas, J. Chem. Eng. Data 32, 48 (1987).

    Google Scholar 

  36. R. P. Rastogi, J. Nath, and J. Nisra, J. Phys. Chem. 71, 2277 (1967).

    Google Scholar 

  37. J. K. Burchard and H. L. Torr, J. Phys. Chem. 66, 2015 (1962).

    Google Scholar 

  38. A. N. Campbell, E. M. Kartzmark, and R. M. Chatterjee, Can. J. Chem. 44, 1183 (1966).

    Google Scholar 

  39. T. G. Bissell and A. G. Williamson, J. Chem. Thermodyn. 7, 131 (1975).

    Google Scholar 

  40. R. L. Rowley, S. C. Yl, V. Gubler, and J. M. Stoker, Fluid Phase Equilibria 36, 219 (1987).

    Google Scholar 

  41. R. A. Metzer, K. L. Young, and R. A. Greenkorn, Chem. Eng. Sci. 33(2), 229 (1978).

    Google Scholar 

  42. T. G. Bissell and R. A. Willtemson, J. Chem. Thermodyn. 7, 815 (1975)

    Google Scholar 

  43. R. S. Murray and M. L. Martin, J. Chem. Eng. Data 15, 391, (1970).

    Google Scholar 

  44. K. R. Harris and P. J. Dunlop, J. Chem. Thermodyn. 2, 805 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X.N. Determination of Diffusion Coefficients for Binary Nonelectrolyte Mixtures. A Free-Volume Predictive Approach. Journal of Solution Chemistry 27, 261–272 (1998). https://doi.org/10.1023/A:1022692303133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022692303133

Navigation