Skip to main content
Log in

A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus) by organogenesis induction on split embryonic axes

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

A new approach for shoot regeneration from split embryonic axes of Helianthus annuus var. RHA266, a poor responding genotype to in vitro culture, has been developed. The regeneration procedure is based on successive excision of the apical and axillary shoots originating from pre-existing meristems. This elimination process stimulates adventitious shoot bud formation in 80% of treated explants. Although newly induced buds were observed on hormone-free medium, higher rate of induction and bud development were obtained on medium containing 0.1 mg l−1 BA. All regenerated plants were phenotypically similar to seed-derived RHA 266 plants with no observed somaclonal variation, as assessed by AFLP analysis. The efficient shoot regeneration from newly formed meristematic cells should offer opportunities to genetically engineer economically important sunflower genotypes that have proven till now, to be recalcitrant towards other regeneration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bronner R, Jeannin G & Hahne G (1994) Early cellular events during organogenesis and somatic embryogenesis induced on immature zygotic embryos of sunflower (Helianthus annuus). Can. J. Bot. 72: 239-248

    Google Scholar 

  • Burrus M, Chanabe C, Alibert G & Bidney D (1991) Regeneration of fertile plants from protoplasts of sunflower (Helianthus an-nuus L.). Plant Cell Rep. 10: 161-166

    Google Scholar 

  • Charriere F & Hahne G (1998) Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: role of plant growth regulators. Plant Sci. 137: 63-71

    Google Scholar 

  • Charriere F, Sotta B, Miginiac E & Hahne G (1999) Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels. Plant Physiol. Biochem. 37:751-757

    Google Scholar 

  • Encheva J, Ivanov P, Tsvetkova F & Nikolova V (1993) Develop-ment of a new initial breeding material in sunflower (Helianthus annuus L.) using direct organogenesis and somatic embryogenesis. Euphytica 68: 181-185

    Google Scholar 

  • Espinasse A, Lay C & Volin J (1989) Effects of growth regulator concentrations and explant size on shoot organogenesis from callus derived from zygotic embryos of sunflower (Helianthus annuus L.). Plant Cell Tiss. Org. Cult. 17: 171-181

    Google Scholar 

  • Everett NP, Robinson KEP & Mascarenhas D (1987) Genetic engineering of sunflower (Helianthus annuus L.). Bio/ technol 5: 1201-1204

    Google Scholar 

  • Flores Berrios E, Gentzbittel L, Kayyal H, Alibert G & Sarrafi A (2000) AFLP mapping of QTLs for in vitro organogenesis traits using recombinant inbred lines in sunflower (Helianthus annuus L.). Theor. Appl. Genet. 101: 1299-1306

    Google Scholar 

  • Freyssinet M & Freyssinet G (1988) Fertile plant regeneration from sunflower (Helianthus annuus L.) immature embryos. Plant Sci. 56: 177-181

    Google Scholar 

  • Fulton TM, Chunwongse J & Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbace-ous plants. Plant Mol. Bio. Rep. 13: 207-209

    Google Scholar 

  • Goto S, Thakur RC & Ishii K (1998) Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep. 18: 193-197

    Google Scholar 

  • Greco B, Tanzarella OA, Carrozzo G & Blanco A (1984) Callus induction and shoot regeneration in sunflower (Helianthus annuus L.). Plant Sci. Lett. 36: 73-77

    Google Scholar 

  • Knittel N, Escandon AS & Hahne G (1991)Plant regeneration at high frequency from mature sunflower cotyledons. Plant Sci. 73: 219-226

    Google Scholar 

  • Knittel N, Gruber V, Hahne G & Lenee P (1994) Transformation of sunflower (Helianthus annuus L.): a reliable protocol. Plant Cell Rep. 14: 81-86

    Google Scholar 

  • Lucas O, Kallerhoff J & Alibert G (2000) Production of stable transgenic sunflower (Helianthus annuus L.) from wounded immature embryos by particle bombardment and co-cultivation with Agrobacterium tumefaciens. Mol. Breed. 6: 479-487

    Google Scholar 

  • Malone-Schoneberg J, Scelonge CJ, Burrus M & Bidney DL (1994) Stable transformation of sunflower using Agrobacterium and split embryonic axis explants. Plant Sci. 103: 199-207

    Google Scholar 

  • McCann AW, Cooley G & Van Dreser J (1988) A system for routine plantlet regeneration of sunflower (Helianthus annuus L.) from immature embryo-derived callus. Plant Cell Tiss. Org. Cult. 14: 103-110

    Google Scholar 

  • Mϋller A, Iser M & Hess D (2001) Stable transformation of sunflower (Helianthus annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker. Transgenic Res. 10: 435-444

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497

    Google Scholar 

  • Nestares G, Zorzoli R, Mroginski L & Picardi L (1998) Cytoenesis. plasmic effects on the regeneration ability of sunflower. Plant Breed. 117: 188-190

    Google Scholar 

  • Paterson KE (1984) Shoot tip culture of Helianthus annuus - flowering and development of adventitious and multiple shoots. Am. J. Bot. 71: 925-931

    Google Scholar 

  • Power CJ (1987) Organogenesis from Helianthus annuus inbreds and hybrids from the cotyledons of zygotic embryos. Am. J. Bot. 74: 497-503

    Google Scholar 

  • Pugliesi C, Megale P, Cecconi F & Baroncelli S (1993a) Organogenesis and embryogenesis in Helianthus tuberosus and in the interspecific hybrid Helianthus annuusΧHelianthus tuberosus. Plant Cell Tiss. Org. Cult. 33: 187-193

    Google Scholar 

  • Pugliesi C, Biasini MG, Fambrini M & Baroncelli S (1993b) Genetic transformation by Agrobacterium tumefaciens in the interspecific hybrid Helianthus annuusΧHelianthus tuberosus. Plant Sci. 93: 105-115

    Google Scholar 

  • Punia MS & Bohorova NE (1992) Callus development and plant regeneration from different explants of six wild species of sunflower (Helianthus L.). Plant Sci. 87: 79-83

    Google Scholar 

  • Roseland CR, Espinasse A & Grosz TJ (1991) Somaclonal variants of sunflower with modified coumarin expression under stress. Euphytica 54: 183-190

    Google Scholar 

  • Tang W (2001) In vitro regeneration of loblolly pine and random amplified polymorphic DNA analyses of regenerated plantlets. Plant Cell Rep. 20: 163-168

    Google Scholar 

  • Vear F, Gentzbittel L, Philippon J, Mouzayar S, Mestries E, Roeckel-Drevet P, Tourvieille de Labrouhe D & Nicolas P (1997) The genetics of resistance to five races of downy mildiou (Plasmopara hastedii) in sunflower (Helianthus annuus L.). Theor. Appl. Genet. 95: 584-589

    Google Scholar 

  • Vendrame WA, Kochert G & Wetzstein HY (1999) AFLP analysis of variation in pecan somatic embryos. Plant Cell Rep. 18: 853-857

    Google Scholar 

  • Watanabe A, Araki S, Kobari S, Sudo H, Tsuchida T, Uno T, Kosaka N, Shimomura K, Yamazaki M & Saito K (1998) In vitro propagation, restriction fragment length polymorphism, and random amplified polymorphic DNA analyses of Angelica plants. Plant Cell Rep. 18: 187-192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Kallerhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hewezi, T., Jardinaud, F., Alibert, G. et al. A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus) by organogenesis induction on split embryonic axes. Plant Cell, Tissue and Organ Culture 73, 81–86 (2003). https://doi.org/10.1023/A:1022689229547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022689229547

Navigation