Abstract
A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of Cr2O3 and FeCr2O4 in alkaline sodium phosphate, sodium hydroxide, and ammonium hydroxide solutions between 21 and 288°C. Baseline Cr(III) ion solubilities were found to be on the order of 0.1 nmolal, which were enhanced by the formation of anionic hydroxo and phosphato complexes. At temperatures below 51°C, the activity of Cr(III) ions in aqueous solution is controlled by a Cr(OH)3·3H2O solid phase rather than Cr2O3; above 51°C the saturating solid phase is γ-CrOOH. Measured chromium solubilities were interpreted via a Cr(III) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reaction equilibria were obtained from least-squares analyses of the data. The existence of four new Cr(III) ion complexes is reported: Cr(OH)3(H2PO4)−, Cr(OH)3(HPO4)2−, Cr(OH)3(PO4)3−, and Cr(OH)4(HPO4)-(H2PO4)4−. The last species is the dominant Cr(III) ion complex in concentrated, alkaline phosphate solutions at elevated temperatures.
Similar content being viewed by others
REFERENCES
J. Robertson, Corrosion Sci. 32, 443 (1991).
F. H. Sweeton and C. F. Baes, J. Chem. Thermodyn. 2, 479 (1970).
P. R. Tremaine and J. C. LeBlanc, J. Solution Chem. 9, 415 (1980).
S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 24, 837 (1995).
S. E. Ziemniak and E. P. Opalka, in Proc. Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, E. Simonen and R. E. Gold, eds. (The Minerals, Metals, & Materials Society, Warrendale, PA, 1993), p. 929.
P. R. Tremaine and J. C. LeBlanc, J. Chem. Thermodyn. 12, 521 (1980).
S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 18, 1133 (1989).
S. E. Ziemniak and E. P. Opalka, in Proc. Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, G. J. Theus and J. R. Weeks, eds. (The Metallurgical Society, Warrendale, PA, 1988), p. 153.
M. W. Shafer and R. Roy, Z. Anorg. Allg. Chem. 276, 275 (1954).
R. Giovanoli, W. Stadelmann, and W. Feitknecht, Helv. Chim. Acta 56, 839 (1973).
U. von Meyenburg, O. Siroky, and G. Schwarzenbach, Helv. Chim. Acta 56, 1099 (1973).
W. O. Milligan and L. Merten, J. Phys. Chem. 51, 521 (1947).
R. M. Douglass, Acta Crystallogr. 10, 423 (1957).
W. C. Hamilton and J. A. Ibers, Acta Crystallogr. 16, 1209 (1963).
B. J. Thamer, R. M. Douglass, and E. Staritzky, J. Am. Chem. Soc. 79, 547 (1957).
A. N. Christensen, Inorg. Chem. 5, 1452 (1966).
F. Hund, Naturwissenschaften 46, 320 (1959).
A. N. Christensen, Acta Chem. Scand. A30, 133 (1976).
JCPDS Powder Diffraction File (International Centre for Diffraction Data, Swarthmore, PA, 1989), Sets 1-39, Card No. 25-1497.
G. P. Halada and C. R. Clayton, J. Electrochem. Soc. 138, 2921 (1991).
N. S. McIntyre and D. G. Zetaruk, Anal. Chem. 49, 1521 (1977).
R. Fernandez Prini and R. Crovetto, J. Phys. Chem. Ref. Data 18, 1231 (1989).
D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data 11(Suppl. 2), (1982).
C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976).
J. B. Lee, Corrosion 37, 467 (1981).
S. C. Lahiri and S. Aditya, J. Indian Chem. Soc. 43, 513 (1966).
A. E. Aleshechkina, V. M. Masalovich, P. K. Agasyan, and B. P. Sereda, Russ. J. Inorg. Chem. 21, 973 (1976).
W. Stumm and J. J. Morgan, Aquatic Chemistry (Wiley-Interscience, New York, 1970).
C. S. Garner and D. A. House, in Transition Metal Chemistry, Vol. 6, R. L. Carlin, ed. (Marcel Dekker, New York, 1970).
R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes, J. Solution Chem. 21, 699 (1988).
G. M. Anderson, S. Castet, J. Schott, and R. E. Mesmer, Geochim. Cosmochim. Acta 55, 1769 (1991).
S. E. Ziemniak, J. Solution Chem. 21, 745 (1992).
S. Castet, J.-L. Dandurand, J. Schott, and R. Gout, Geochim. Cosmochim. Acta 57, 4869 (1993).
F. H. Sweeton, R. E. Mesmer, and C. F. Baes, J. Solution Chem. 3, 191 (1974).
B. F. Hitch and R. E. Mesmer, J. Solution Chem. 5, 667 (1976).
R. E. Mesmer and C. F. Baes, J. Solution Chem. 3, 307 (1974).
N. C. Treloar, Central Electricity Research Laboratory Report RD/L/N 270/73 (1973).
L. O. Gilpatrick and H. H. Stone, Oak Ridge National Laboratory Reports ORNL-3127 (1961) and ORNL-3262 (1962).
W. L. Marshall, R. Slusher, and E. V. Jones, J. Chem. Eng. Data 9, 187 (1964).
W. L. Marshall and E. V. Jones, J. Phys. Chem. 70, 4028 (1966).
D. L. Marquardt, J. Soc. Indust. Appl. Math. 2, 431 (1963).
I. Barin, Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, 1989).
W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solutions (Prentice-Hall, New York, 1952).
I. Dellien, F. M. Hall, and L. G. Hepler, Chem. Rev. 76, 283 (1976).
I. Dellien and L. G. Hepler, Can. J. Chem. 54, 1383 (1976).
V. P. Vasil'ev, V. N. Vasil'eva, and O. G. Ruskova, Russ. J. Inorg. Chem. 22, 1258 (1977).
J. W. Larson, P. Cerutti, H. K. Garber, and L. G. Hepler, J. Phys. Chem. 72, 2902 (1968).
V. A. Pokrovskii and H. C. Helgeson, Am. J. Sci. 295, 1255 (1995).
Y. Marcus, J. Chem. Soc., Faraday Trans. I, 82, 233 (1986).
S. E. Ziemniak and E. P. Opalka, Chem. Mater. 5, 690 (1993).
S. C. Lahiri, J. Indian. Chem. Soc. 42, 715 (1965).
H. Galal-Gorchev and W. Stumm, J. Inorg. Chem. 25, 567 (1963).
J. R. Fisher and E. Zen, Am. J. Sci. 270, 297 (1971).
G. T. Bhandage, J. A. K. Tareen, and B. Basavalingu, J. Less Common Met. 154, 355 (1989).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ziemniak, S.E., Jones, M.E. & Combs, K.E.S. Solubility and Phase Behavior of Cr(III) Oxides in Alkaline Media at Elevated Temperatures. Journal of Solution Chemistry 27, 33–66 (1998). https://doi.org/10.1023/A:1022688528380
Issue Date:
DOI: https://doi.org/10.1023/A:1022688528380