Skip to main content
Log in

Solubility and Phase Behavior of Cr(III) Oxides in Alkaline Media at Elevated Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of Cr2O3 and FeCr2O4 in alkaline sodium phosphate, sodium hydroxide, and ammonium hydroxide solutions between 21 and 288°C. Baseline Cr(III) ion solubilities were found to be on the order of 0.1 nmolal, which were enhanced by the formation of anionic hydroxo and phosphato complexes. At temperatures below 51°C, the activity of Cr(III) ions in aqueous solution is controlled by a Cr(OH)3·3H2O solid phase rather than Cr2O3; above 51°C the saturating solid phase is γ-CrOOH. Measured chromium solubilities were interpreted via a Cr(III) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reaction equilibria were obtained from least-squares analyses of the data. The existence of four new Cr(III) ion complexes is reported: Cr(OH)3(H2PO4), Cr(OH)3(HPO4)2−, Cr(OH)3(PO4)3−, and Cr(OH)4(HPO4)-(H2PO4)4−. The last species is the dominant Cr(III) ion complex in concentrated, alkaline phosphate solutions at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Robertson, Corrosion Sci. 32, 443 (1991).

    Google Scholar 

  2. F. H. Sweeton and C. F. Baes, J. Chem. Thermodyn. 2, 479 (1970).

    Google Scholar 

  3. P. R. Tremaine and J. C. LeBlanc, J. Solution Chem. 9, 415 (1980).

    Google Scholar 

  4. S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 24, 837 (1995).

    Google Scholar 

  5. S. E. Ziemniak and E. P. Opalka, in Proc. Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, E. Simonen and R. E. Gold, eds. (The Minerals, Metals, & Materials Society, Warrendale, PA, 1993), p. 929.

    Google Scholar 

  6. P. R. Tremaine and J. C. LeBlanc, J. Chem. Thermodyn. 12, 521 (1980).

    Google Scholar 

  7. S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 18, 1133 (1989).

    Google Scholar 

  8. S. E. Ziemniak and E. P. Opalka, in Proc. Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, G. J. Theus and J. R. Weeks, eds. (The Metallurgical Society, Warrendale, PA, 1988), p. 153.

    Google Scholar 

  9. M. W. Shafer and R. Roy, Z. Anorg. Allg. Chem. 276, 275 (1954).

    Google Scholar 

  10. R. Giovanoli, W. Stadelmann, and W. Feitknecht, Helv. Chim. Acta 56, 839 (1973).

    Google Scholar 

  11. U. von Meyenburg, O. Siroky, and G. Schwarzenbach, Helv. Chim. Acta 56, 1099 (1973).

    Google Scholar 

  12. W. O. Milligan and L. Merten, J. Phys. Chem. 51, 521 (1947).

    Google Scholar 

  13. R. M. Douglass, Acta Crystallogr. 10, 423 (1957).

    Google Scholar 

  14. W. C. Hamilton and J. A. Ibers, Acta Crystallogr. 16, 1209 (1963).

    Google Scholar 

  15. B. J. Thamer, R. M. Douglass, and E. Staritzky, J. Am. Chem. Soc. 79, 547 (1957).

    Google Scholar 

  16. A. N. Christensen, Inorg. Chem. 5, 1452 (1966).

    Google Scholar 

  17. F. Hund, Naturwissenschaften 46, 320 (1959).

    Google Scholar 

  18. A. N. Christensen, Acta Chem. Scand. A30, 133 (1976).

    Google Scholar 

  19. JCPDS Powder Diffraction File (International Centre for Diffraction Data, Swarthmore, PA, 1989), Sets 1-39, Card No. 25-1497.

    Google Scholar 

  20. G. P. Halada and C. R. Clayton, J. Electrochem. Soc. 138, 2921 (1991).

    Google Scholar 

  21. N. S. McIntyre and D. G. Zetaruk, Anal. Chem. 49, 1521 (1977).

    Google Scholar 

  22. R. Fernandez Prini and R. Crovetto, J. Phys. Chem. Ref. Data 18, 1231 (1989).

    Google Scholar 

  23. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data 11(Suppl. 2), (1982).

  24. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  25. J. B. Lee, Corrosion 37, 467 (1981).

    Google Scholar 

  26. S. C. Lahiri and S. Aditya, J. Indian Chem. Soc. 43, 513 (1966).

    Google Scholar 

  27. A. E. Aleshechkina, V. M. Masalovich, P. K. Agasyan, and B. P. Sereda, Russ. J. Inorg. Chem. 21, 973 (1976).

    Google Scholar 

  28. W. Stumm and J. J. Morgan, Aquatic Chemistry (Wiley-Interscience, New York, 1970).

    Google Scholar 

  29. C. S. Garner and D. A. House, in Transition Metal Chemistry, Vol. 6, R. L. Carlin, ed. (Marcel Dekker, New York, 1970).

    Google Scholar 

  30. R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes, J. Solution Chem. 21, 699 (1988).

    Google Scholar 

  31. G. M. Anderson, S. Castet, J. Schott, and R. E. Mesmer, Geochim. Cosmochim. Acta 55, 1769 (1991).

    Google Scholar 

  32. S. E. Ziemniak, J. Solution Chem. 21, 745 (1992).

    Google Scholar 

  33. S. Castet, J.-L. Dandurand, J. Schott, and R. Gout, Geochim. Cosmochim. Acta 57, 4869 (1993).

    Google Scholar 

  34. F. H. Sweeton, R. E. Mesmer, and C. F. Baes, J. Solution Chem. 3, 191 (1974).

    Google Scholar 

  35. B. F. Hitch and R. E. Mesmer, J. Solution Chem. 5, 667 (1976).

    Google Scholar 

  36. R. E. Mesmer and C. F. Baes, J. Solution Chem. 3, 307 (1974).

    Google Scholar 

  37. N. C. Treloar, Central Electricity Research Laboratory Report RD/L/N 270/73 (1973).

  38. L. O. Gilpatrick and H. H. Stone, Oak Ridge National Laboratory Reports ORNL-3127 (1961) and ORNL-3262 (1962).

  39. W. L. Marshall, R. Slusher, and E. V. Jones, J. Chem. Eng. Data 9, 187 (1964).

    Google Scholar 

  40. W. L. Marshall and E. V. Jones, J. Phys. Chem. 70, 4028 (1966).

    Google Scholar 

  41. D. L. Marquardt, J. Soc. Indust. Appl. Math. 2, 431 (1963).

    Google Scholar 

  42. I. Barin, Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, 1989).

    Google Scholar 

  43. W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solutions (Prentice-Hall, New York, 1952).

    Google Scholar 

  44. I. Dellien, F. M. Hall, and L. G. Hepler, Chem. Rev. 76, 283 (1976).

    Google Scholar 

  45. I. Dellien and L. G. Hepler, Can. J. Chem. 54, 1383 (1976).

    Google Scholar 

  46. V. P. Vasil'ev, V. N. Vasil'eva, and O. G. Ruskova, Russ. J. Inorg. Chem. 22, 1258 (1977).

    Google Scholar 

  47. J. W. Larson, P. Cerutti, H. K. Garber, and L. G. Hepler, J. Phys. Chem. 72, 2902 (1968).

    Google Scholar 

  48. V. A. Pokrovskii and H. C. Helgeson, Am. J. Sci. 295, 1255 (1995).

    Google Scholar 

  49. Y. Marcus, J. Chem. Soc., Faraday Trans. I, 82, 233 (1986).

    Google Scholar 

  50. S. E. Ziemniak and E. P. Opalka, Chem. Mater. 5, 690 (1993).

    Google Scholar 

  51. S. C. Lahiri, J. Indian. Chem. Soc. 42, 715 (1965).

    Google Scholar 

  52. H. Galal-Gorchev and W. Stumm, J. Inorg. Chem. 25, 567 (1963).

    Google Scholar 

  53. J. R. Fisher and E. Zen, Am. J. Sci. 270, 297 (1971).

    Google Scholar 

  54. G. T. Bhandage, J. A. K. Tareen, and B. Basavalingu, J. Less Common Met. 154, 355 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziemniak, S.E., Jones, M.E. & Combs, K.E.S. Solubility and Phase Behavior of Cr(III) Oxides in Alkaline Media at Elevated Temperatures. Journal of Solution Chemistry 27, 33–66 (1998). https://doi.org/10.1023/A:1022688528380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022688528380

Navigation