Skip to main content
Log in

Determination of the Critical Point of Gold

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Wire-shaped gold specimens are placed in a new, improved high-pressure vessel, which is part of a fast capacitor-discharge circuit and in which static pressures above 600 MPa can be reached with distilled water as the pressure-transmitting medium. The specimens are self-heated resistively by a current pulse. The current through the specimen, the voltage drop across it, and its temperature are recorded as a function of time with submicrosecond resolution. The radial expansion of the specimen is determined with a CCD camera, Experiments are performed at different pressures. When the critical pressure is exceeded, there is no liquid–gas phase transition; hence, no sudden change in the thermal expansion rate is observed. The results for temperature, pressure, and specific volume at the critical point of gold are as follows: T c =7400±1100 K, p c=530±20 MPa, and v c=0.13±0.03 × 10−3m3·kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Pottlacher and H. Jäger, Int. J. Thermophys. 11:719 (1990).

    Google Scholar 

  2. G. Pottlacher, T. Neger, and H. Jäger, High Temp.-High Press. 23:43 (1991).

    Google Scholar 

  3. C. Otter, G. Pottlacher, and H. Jäger, Int. J. Thermophys. 17:987 (1996).

    Google Scholar 

  4. M. Beutel, G. Pottlacher, and H. Jäger, Int. J. Thermophys. 15:1323 (1994).

    Google Scholar 

  5. H. Hess, E. Kaschnitz, and G. Pottlacher, High Press. Res. 12:29 (1994).

    Google Scholar 

  6. R. W. Ohse and H. Tippelskirch, High Temp.-High Press. 9:367 (1977).

    Google Scholar 

  7. E. Kaschnitz, G. Pottlacher, and H. Jäger, Int. J. Thermophys. 13:699 (1992).

    Google Scholar 

  8. E. Kaschnitz, G. Nussbaumer, G. Pottlacher, and H. Jäger, Int. J. Thermophys. 14:251 (1993).

    Google Scholar 

  9. R. Gallob, Ph.D. Thesis (Technical University Graz, Graz, 1982).

  10. G. R. Gathers, Rep. Prog. Phys. 49:341 (1986).

    Google Scholar 

  11. U. Seydel and W. Fucke, J. Phys. F Metal. Phys. 8:L157 (1978).

    Google Scholar 

  12. W. Fucke and U. Seydel, High Temp.-High Press 12:419 (1980).

    Google Scholar 

  13. J. Magill and R. W. Ohse, in Handbook of Thermodynamic and Transport Properties of Alkali Metals, R. W. Ohse, ed. (Blackwell Scientific, Oxford, 1985), p. 73.

    Google Scholar 

  14. E. Morris, AWRE Report No. o-67/64 (London UKAEA, 1964).

  15. D. A. Young and B. J. Alder, Phys. Rev. A 3:364 (1971).

    Google Scholar 

  16. I. Egry, personal communication (1995).

  17. D. S. Gates and G. Thodos, AIChE J. 6:50 (1960).

    Google Scholar 

  18. A. V. Grosse and A. D. Kirshenbaum, J. Inorg. Nucl. Chem. 22:739 (1962).

    Google Scholar 

  19. M. M. Martynyuk and I. Karimkhodzhaev, Russ. J. Phys. Chem. 48:722 (1974).

    Google Scholar 

  20. G. Lang, Z. Metallkde. 68:213 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boboridis, K., Pottlacher, G. & Jäger, H. Determination of the Critical Point of Gold. International Journal of Thermophysics 20, 1289–1297 (1999). https://doi.org/10.1023/A:1022687811410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022687811410

Navigation