Skip to main content
Log in

Synthesis and Processing of Doped Hg1Ba2Ca2Cu3O y Superconductors

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

A series of quenching experiments were conducted to understand the sequence of reactions that occur during the synthesis of doped Hg1223, (Hg, A)Ba2Ca2Cu3O y , A = Re, Bi, and Pb (HgA1223). The formation and decomposition of the intermediate phases during the high-temperature reaction were followed as a function of temperature. HgA1223 phase forms over a wide range of temperatures, 750–950°C, 750–880°C, and 840–880°C for A = Re, Pb, and Bi, respectively. At T<750°C, HgA1212 phase forms for A = Re and Pb. Based on the results of quenching experiments, heat treatment conditions were optimized for the synthesis of pure HgA1223 phase using commercial BaCaCuO precursor powders. A reduced-temperature annealing stage after the high-temperature reaction helps in grain growth and improves the microstructural characteristics of HgA1223 samples. Control of Hg pressure during the reaction is crucial for achieving phase purity, grain growth, and texture in the final products. A novel approach for the control of Hg pressure during the synthesis of HgA1223, which consists of using CaHgO2 as an external Hg source, is reported. HgA1223 samples synthesized using the new synthesis protocol exhibit improved microstructural and superconducting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. N. Putilin, E. V. Antipov, O. Chmaissem, and M. Marezio, Nature (London) 362, 226 (1993).

    Google Scholar 

  2. A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature (London) 363, 56 (1993).

    Google Scholar 

  3. A. Schilling, O. Jeandupeux, J. D. Guo, and H. R. Ott, Physica C 216, 6 (1996).

    Google Scholar 

  4. U. Welp, G. W. Crabtree, J. L. Wagner, and D. G. Hinks, Physica C 218, 373 (1993).

    Google Scholar 

  5. Y. R. Sun, K. M. Amm, and J. Schwartz, IEEE Trans. Appl. Supercond. 5, 1870 (1995).

    Google Scholar 

  6. S. H. Yun and J. Z. Wu, Appl. Phys. Lett. 68, 862 (1996).

    Google Scholar 

  7. S. Reich and Y. Tsabba, Adv. Mater. 9, 329 (1997).

    Google Scholar 

  8. S. H. Yun, J. Z. Wu, S. C. Tidrow, and D. W. Eckart, Appl. Phys. Lett. 68, 2565 (1996).

    Google Scholar 

  9. M. Paranthaman, Physica C 222, 7 (1994).

    Google Scholar 

  10. K. Yamaura, J. L. Shimoyama, S. Hahakura, Z. Hiroi, M. Takano, and K. Kishio, Physica C 216, 6 (1995).

    Google Scholar 

  11. H. Yamasaki, Y. Nakagawa, Y. Mawatari, and B. Cao, Physica C 274, 213 (1997).

    Google Scholar 

  12. Ch. Wolters, K. M. Amm, Y. R. Sun, and J. Schwartz, Physica C 267, 164 (1996).

    Google Scholar 

  13. C. Michel, M. Hervieu, A. Maignan, D. Pelloquin, V. Badri, and B. Raveau, Physica C 241, 1 (1995).

    Google Scholar 

  14. K. Isawa, A. T. Yamamoto, M. Itoh, S. Adachi, and H. Yamauchi, Physica C 217, 11 (1993).

    Google Scholar 

  15. K. Isawa, A. T. Yamamoto, M. Itoh, S. Adachi, and H. Yamauchi, Appl. Phys. Lett. 65, 2105 (1994).

    Google Scholar 

  16. D. Pelloquin, V. Hardy, and A. Maignan, Phys. Rev. B 54, 1 (1996).

    Google Scholar 

  17. Y. Tsabba and S. Reich, Physica C 254, 21 (1995).

    Google Scholar 

  18. O. Chmaissem, P. Guptasarma, U. Welp, D. G. Hinks, and J. D. Jorgensen, preprint.

  19. R. L. Meng, B. R. Hickey, Y. Y. Sun, Y. Cao, C. Kinalidis, J. Meen, Y. Y. Xue, and C. W. Chu, Physica C 260, 1 (1996).

    Google Scholar 

  20. P. V. P. S. S. Sastry, K. M. Amm, D. C. Knoll, S. C. Peterson, and J. Schwartz, Advances in Cryogenic Engineering (Materials), Vol. 43, in press.

  21. P. V. P. S. S. Sastry, K. M. Amm, D. C. Knoll, S. C. Peterson, and J. Schwartz, J. Supercond. 11, 49 (1998).

    Google Scholar 

  22. P. V. P. S. S. Sastry, K. M. Amm, D. C. Knoll, S. C. Peterson, and J. Schwartz, Physica C 297, 223 (1998).

    Google Scholar 

  23. M. Xu and D. K. Finnemore, J. Appl. Phys. 76, 1111 (1994).

    Google Scholar 

  24. W. Zhang and E. E. Hellstrom, Supercond. Sci. Technol. 8, 430 (1995).

    Google Scholar 

  25. R. L. Meng, L. Beauvais, X. N. Zhang, Z. J. Huang, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Physica C 216, 21 (1993).

    Google Scholar 

  26. L. M. Rubin, T. P. Orlando, J. B. Vander Sande, G. Gorman, R. Savoy, R. Swope, and R. Beyers, Appl. Phys. Lett. 61, 1997 (1992).

    Google Scholar 

  27. T. G. Holensinger, D. J. Miller, H. K. Viswanathan, and L. S. Chumbley, J. Mater. Res. 8, 2149 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, P.V.P.S.S., Schwartz, J. Synthesis and Processing of Doped Hg1Ba2Ca2Cu3O y Superconductors. Journal of Superconductivity 11, 595–602 (1998). https://doi.org/10.1023/A:1022687313287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022687313287

Navigation