Skip to main content
Log in

Measurement of the Electrical Conductivity of Metals in the Vicinity of the Critical Point

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Measurement of the electrical conductivity of metal plasmas at near-solid densities is made possible by rapid vaporization of metal wires in water. The water acts as a tamper, slowing the expansion of the plasma and ensuring a well-defined cylindrical boundary. Measurement of the time-varying resistance is straightforward, and the conductivity and density are easily deduced after the column diameter is measured photographically. Temperature may be deduced from the measured energy input with help of an equation of state provided by the LANL SESAME tables. Measurements have been made on copper, aluminum, and tungsten plasmas. The electrical conductivity is almost independent of temperature at the highest densities. Conductivity falls steeply with falling density and reaches a minimum at a few percent of solid density, rising with further reduction in density. Near the minimum, the temperature dependence of the conductivity becomes appreciable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. W. DeSilva and H.-J. Kunze, Phys. Rev. E 49:4448 (1994).

    Google Scholar 

  2. A. W. DeSilva and J. D. Katsouros, Phys. Rev. E 57:5945 (1998).

    Google Scholar 

  3. K. S. Fansler and D. D. Shear, in Exploding Wires, Vol. 4, W. G. Chace and H. K. Moore, eds. (Plenum, New York, 1959), pp. 185–193.

    Google Scholar 

  4. S. G. Barolskii, N. V. Ermokhin, P. P. Kulik, and V. A. Ryabyi, High Temp. 14:626 (1976).

    Google Scholar 

  5. P. P. Kulik, E. K. Rozanov, and V. A. Ryabyi, High Temp. 15:349 (1977).

    Google Scholar 

  6. V. M. Adamyan, G. A. Gulyi, N. L. Pushek, P. D. Starchik, I. M. Tkachenko, and I. S. Shvets, High Temp. 18:186 (1980).

    Google Scholar 

  7. R. Shepherd, D. Kania, L. A. Jones, M. Maestas, D. Nothwing, and K. Stetler, Bull. Am. Phys. Soc. 32:1818 (1987).

    Google Scholar 

  8. K. S. Trainor, J. Appl. Phys. 54:2372 (1983).

    Google Scholar 

  9. M. N. Plooster, Phys. Fluids 13:2665 (1970).

    Google Scholar 

  10. M. H. Rice and J. M. Walsh, J. Chem. Phys. 26:824 (1957).

    Google Scholar 

  11. L. Spitzer, Jr., Physics of Fully Ionized Plasmas (Interscience, New York, 1956), p. 86.

    Google Scholar 

  12. A. Kloss, T. Motzke, R. Grossjohann, and H. Hess, Phys. Rev. E 54:5851 (1996).

    Google Scholar 

  13. A. N. Mostovych and Y. Chan, Phys. Rev. Lett. 79:5094 (1997).

    Google Scholar 

  14. W. Ebeling, A. Förster, V. E. Fortov, V. K. Gryaznov, and A. Ya. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (B. G. Teubner Verlagsgesellschaft, Stuttgart, 1991), pp. 266–285.

    Google Scholar 

  15. S. Ichimaru and S. Tanaka, Phys. Rev. A 32:1790 (1985).

    Google Scholar 

  16. Yu.K. Kurilenkov and A. A. Valuev, Beitr. Plasmaphys. 24:161 (1984).

    Google Scholar 

  17. Y. T. Lee and R. M. More, Phys. Fluids 27:1273 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSilva, A.W., Katsouros, J.D. Measurement of the Electrical Conductivity of Metals in the Vicinity of the Critical Point. International Journal of Thermophysics 20, 1267–1277 (1999). https://doi.org/10.1023/A:1022683610502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022683610502

Navigation