Skip to main content
Log in

“Toy Models” of Turbulent Convection and the Hypothesis on Local Isotropy Restoration

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We give a brief review of recent results devoted to effects of large-scale anisotropy on the inertial-range statistics of the passive scalar quantity θ(t, x) advected by a synthetic turbulent velocity field with covariance ∝ δ(t – t')|xx'|ε. An inertial-range anomalous scaling behavior is established, and explicit asymptotic expressions for the structure functions S n(r) ≡ 〈 [θ(t, x + r) – θ(t, x)]n〉 are obtained; they are represented by superpositions of power laws with nonuniversal (dependent on the anisotropy parameters) anomalous exponents, calculated to the first order in ε in any space dimension. The exponents are associated with tensor composite operators, built of scalar gradients, and exhibit a kind of hierarchy related to the degree of anisotropy: the less the rank, the less the dimension and, consequently, the more important the contribution to the inertial-range behavior. The leading terms of even (odd) structure functions are given by scalar (respectively, vector) operators. Small-scale anisotropy reveals itself in odd correlation functions: for an incompressible velocity field, S 3/S 2 3/2 decreases in the direction toward the depth of the inertial range, while higher-order odd ratios increase; if the compressibility is sufficiently strong, the skewness factor also becomes increasing. Bibliography: 33 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 2, MIT Press, Cambridge (1975).

    Google Scholar 

  2. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press (1995).

  3. R. Antonia, E. Hop_nger, Y. Gagne, and F. Anselmet, Phys. Rev., A30, 2704 (1984).

    Google Scholar 

  4. M. Holzer and E. D. Siggia, Phys. Fluids, 6, 1820 (1994).

    Google Scholar 

  5. R. H. Kraichnan, Phys. Fluids, 11, 945 (1968).

    Google Scholar 

  6. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev.E, 52, 4924 (1995).

    Google Scholar 

  7. K. Gaw¢edzki and A. Kupiainen, Phys. Rev. Lett., 75, 3834 (1995).

    Google Scholar 

  8. A. Pumir, Europhys. Lett., 34, 25 (1996).

    Google Scholar 

  9. B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett., 77, 2463 (1996).

    Google Scholar 

  10. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev, Phys. Rev. E, 58, 1823 (1998).

    Google Scholar 

  11. L. Ts. Adzhemyan and N. V. Antonov, Phys. Rev. E, 58, 7381 (1998).

    Google Scholar 

  12. N. V. Antonov, Phys. Rev. E, 60, 6691 (1999).

    Google Scholar 

  13. N. V. Antonov, chao-dyn/9907018 (submitted to the Physics D.).

  14. A. Celani, A. Lanotte, A. Mazzino, and M. Vergassola, Phys. Rev. Lett., 84, 2385 (2000).

    Google Scholar 

  15. A. Lanotte and A. Mazzino, Phys. Rev. E, 60, R3483 (1999).

    Google Scholar 

  16. N. V. Antonov, A. Lanotte, and A. Mazzino, ''Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence," nlin.CD/0001039 (to appear in Phys. Rev. E).

  17. I. Arad, L. Biferale, and I. Procaccia, chao-dyn/9909020.

  18. I. Arad, V. L'vov, E. Podivilov, and I. Procaccia, chao-dyn/9907017.

  19. I. Arad, B. Dhruva, S. Kurien, V. S. L'vov, I. Procaccia, and K. R. Sreenivasan, Phys. Rev. Lett., 81, 5330 (1998).

    Google Scholar 

  20. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasiliev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon & Breach, London (1999).

    Google Scholar 

  21. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev, Usp. Fiz. Nauk, 166, 1257 (1996).

    Google Scholar 

  22. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon, Oxford (1989).

    Google Scholar 

  23. A. N. Vasil'ev, Quantum-Field Renormalization Group in the Theory of Critical Phenomena and Stochastic Dynamics[in Russian], St. Petersburg Institute of Nuclear Physics, St. Petersburg (1998).

    Google Scholar 

  24. K. J. Wiese, chao-dyn/9911005.

  25. N. V. Antonov and J. Honkonen, Anomalous Scaling in Two Models of Passive Scalar Advection: Effects of Compressibility and Large-Scale Anisotropy, in preparation.

  26. N. V. Antonov, J. Honkonen, A. Mazzino, and P. Muratore-Ginanneschi, Manifestation of Anisotropy Persis-tence in the Hierarchies of MHD Scaling Exponents, in preparation.

  27. L. Ts. Adzhemyan, N. V. Antonov, M. Hnatich, and S. V. Novikov, Anomalous Scaling of a Passive Scalar in the Presence of Strong Anisotropy, in preparation.

  28. L. Ts. Adzhemyan, S. V. Borisenok, and V. I. Girina, Theor. Math. Phys., 105, 1556 (1995).

    Google Scholar 

  29. G. L. Eyink, Phys. Lett. A, 172, 355 (1993).

    Google Scholar 

  30. B. Duplantier and A. Ludwig, Phys. Rev. Lett., 66, 247 (1991).

    Google Scholar 

  31. M. L¨ assig, cond-mat/9811223 (to appear in Phys. Rev. Lett.).

  32. V. E. Zakharov, V. S. L'vov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence, Vol. 2, Springer Verlag, Berlin (1992).

  33. V. S. L'vov, Yu. V. L'vov, and A. Pomyalov, chao-dyn/9905032.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonov, N.V. “Toy Models” of Turbulent Convection and the Hypothesis on Local Isotropy Restoration. Journal of Mathematical Sciences 115, 1929–1934 (2003). https://doi.org/10.1023/A:1022683325690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022683325690

Keywords

Navigation