Skip to main content
Log in

Nuclear Control of Respiratory Chain Expression in Mammalian Cells

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The majority of gene products required for mitochondrial respiratory function are encoded in the nuclear genome. These include most of the respiratory subunits and all of the proteins that regulate the mitochondrial genetic system. One approach to understanding nucleo-mitochondrial interactions in mammalian cells is to identify the nuclear transcription factors that are common to the expression of these gene products. This has led to the purification and molecular cloning of nuclear respiratory factors, NRF-1 and NRF-2. The DNA binding and transcriptional specificities of these proteins have implicated them in the expression of many respiratory subunits along with key components of the mitochondrial transcription, replication, and heme biosynthetic machinery. In addition, tissue-specific transcription factors have been linked to the coordinate synthesis of contractile proteins and muscle-specific respiratory subunits whereas other more ubiquitous factors may have a dual function in nuclear and mitochondrial gene activation. These findings provide a framework for further investigations of the nuclear genetic mechanisms that integrate the expression of the respiratory apparatus with that of other cellular systems during growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ammendola, R., Fiore, F., Esposito, F., Caserta, G., Mesuraca, M., Russo, T., and Cimino, F. (1995). FEBS Lett. 371, 209–213.

    Google Scholar 

  • Antoshechkin, I., and Bogenhagen, D. F. (1995). Mol. Cell. Biol. 15, 7032–7042.

    Google Scholar 

  • Bachman, N. J., Yang, T. L., Dasen, J. S., Ernst, R. E., and Lomax, M. I. (1996). Arch. Biochem. Biophys. 333, 152–162.

    Google Scholar 

  • Braidotti, G., Borthwick, I. A., and May, B. K. (1993). J. Biol. Chem. 268, 1109–1117.

    Google Scholar 

  • Carter, R. S., Bhat, N. K., Basu, A., and Avadhani, N. G. (1992). J. Biol. Chem. 267, 23418–23426.

    Google Scholar 

  • Carter, R. S., and Avadhani, N. G. (1994). J. Biol. Chem. 269, 4381–4387.

    Google Scholar 

  • Chau, C. A., Evans, M. J., and Scarpulla, R. C. (1992). J. Biol. Chem. 267, 6999–7006.

    Google Scholar 

  • Chrzanowska-Lightowlers, Z. M. A., Preiss, T., and Lightowlers, R. N. (1994). J. Biol. Chem. 269, 27322–27328.

    Google Scholar 

  • Chung, A. B., Stepien, G., Haraguchi, Y., Li, K., and Wallace, D. C. (1992). J. Biol. Chem. 267, 21154–21161.

    Google Scholar 

  • Clayton, D. A. (1992). Int. Rev. Cytol. 141, 217–232.

    Google Scholar 

  • Cooper, J. M., Wischik, C., and Schapira, A. H. V. (1993). Lancet 341, 969–970.

    Google Scholar 

  • Daga, A., Micol, V., Hess, D., Aebersold, R., and Attardi, G. (1993). J. Biol. Chem. 268, 8123–8130.

    Google Scholar 

  • Davis, A. F., Ropp, P. A., Clayton, D. A., and Copeland, W. C. (1996). Nucleic Acids Res. 24, 2753–2759.

    Google Scholar 

  • Demonacos, C., Tsawdaroglou, N., Djordjevic-Markovic, R., Papalopoulou, M., Galanopoulos, V., Papadogeorgaki, S., and Sekeris, C. E. (1993). J. Steroid Biochem. Mol. Biol. 46, 401–413.

    Google Scholar 

  • Demonacos, C., Djordjevic-Markovic, R., Tsawdaroglou, N., and Sekeris, C. E. (1995). J. Steroid Biochem. Mol. Biol. 55, 43–55.

    Google Scholar 

  • Desimone, S. M., and White, K. (1993). Mol. Cell. Biol. 13, 3641–3949.

    Google Scholar 

  • Diffley, J. F., and Stillman, B. (1991). Proc. Natl. Acad. Sci. USA 88, 7864–7868.

    Google Scholar 

  • Diffley, J. F. X., and Stillman, B. (1992). J. Biol. Chem. 267, 3368–3374.

    Google Scholar 

  • Evans, M. J., and Scarpulla, R. C. (1988). Mol. Cell. Biol. 8, 35–41.

    Google Scholar 

  • Evans, M. J., and Scarpulla, R. C. (1989). J. Biol. Chem. 264, 14361–14368.

    Google Scholar 

  • Evans, M. J., and Scarpulla, R. C. (1990). Genes Dev. 4, 1023–1034.

    Google Scholar 

  • Fisher, R. P., and Clayton, D. A. (1988). Mol. Cell. Biol. 8, 3496–3509.

    Google Scholar 

  • Fisher, R. P., Topper, J. N., and Clayton, D. A. (1987). Cell 50, 247–258.

    Google Scholar 

  • Fisher, R. P., Parisi, M. A., and Clayton, D. A. (1989). Genes Dev. 3, 2202–2217.

    Google Scholar 

  • Fisher, R. P., Lisowsky, T., Parisi, M. A., and Clayton, D. A. (1992). J. Biol. Chem. 267, 3358–3367.

    Google Scholar 

  • Forsburg, S. L. and Guarente, L. (1989). Genes Dev. 3, 1166–1178.

    Google Scholar 

  • Genuario, R. R., and Perry, R. P. (1996). J. Biol. Chem. 271, 4388–4395.

    Google Scholar 

  • Genuario, R. R., Kelley, D. E., and Perry, R. P. (1993). Gene Expr. 3, 279–288.

    Google Scholar 

  • Ghivizzani, S. C., Madsen, C. S., and Hauswirth, W. W. (1993). J. Biol. Chem. 268, 8675–8682.

    Google Scholar 

  • Gomez-Cuadrado, A., Martin, M., Noel, M., and Ruiz-Carrillo, A. (1995). Mol. Cell Biol. 15, 6670–6685.

    Google Scholar 

  • Gopalakrishnan, L., and Scarpulla, R. C. (1994). J. Biol. Chem. 269, 105–113.

    Google Scholar 

  • Gopalakrishnan, L., and Scarpulla, R. C. (1995). J. Biol. Chem. 270, 18019–18025.

    Google Scholar 

  • Gugneja, S., Virbasius, J. V., and Scarpulla, R. C. (1995). Mol. Cell. Biol. 15, 102–111.

    Google Scholar 

  • Gugneja, S., Virbasius, C. A., and Scarpulla, R. C. (1996). Mol. Cell. Biol. 16, 5708–5716.

    Google Scholar 

  • Haraguchi, Y., Chung, A. B., Neill, S., and Wallace, D. C. (1994). J. Biol. Chem. 269, 9330–9334.

    Google Scholar 

  • Heddi, A., Lestienne, P., Wallace, D. C., and Stepien, G. (1993). J. Biol. Chem. 268, 12156–12163.

    Google Scholar 

  • Hess, J. F., Parisi, M. A., Bennett, J. L., and Clayton, D. A. (1991). Nature 351, 236–239.

    Google Scholar 

  • Hoog, C., Calzone, F. J., Cutting, A. E., Britten, R. J., and Davidson, E. H. (1991). Development 112, 351–364.

    Google Scholar 

  • Jaehning, J. A. (1993). Mol. Microbiol. 8, 1–4.

    Google Scholar 

  • Kruse, B., Narasimhan, N., and Attardi, G. (1989). Cell 58, 391–397.

    Google Scholar 

  • Ku, C. Y., Lu, Q., Ussuf, K. K., Weinstock, G. M., and Sanborn, B. M. (1991). Mol. Endocrinol. 5, 1669–1676.

    Google Scholar 

  • LaMarco, K., Thompson, C. C., Byers, B. P., Walton, E. M., and McKnight, S. L. (1991). Science 253, 789–792.

    Google Scholar 

  • Larsson, N. G., and Clayton, D. A. (1995). Annu. Rev. Genet. 29, 151–178.

    Google Scholar 

  • Larsson, N.-G., Oldfors, A., Holme, E., and Clayton, D. A. (1994). Biochem. Biophys. Res. Commun. 200, 1374–1381.

    Google Scholar 

  • Larsson, N. G., Garman, J. D., Oldfors, A., Barsh, G. S., and Clayton, D. A. (1996). Nature Genet. 13, 296–302.

    Google Scholar 

  • Lenka, N., Basu, A., Mullick, J., and Avadhani, N. G. (1996). J. Biol. Chem. 271, 30281–30289.

    Google Scholar 

  • Li, K., Hodge, J. A., and Wallace, D. C. (1990). J. Biol. Chem. 265, 20585–20588.

    Google Scholar 

  • Li, K., Neufer, P. D., and Williams, R. S. (1995). Am. J. Physiol. Cell Physiol. 269, C1265–C1270.

    Google Scholar 

  • Liao, X., and Butow, R. A. (1993). Cell 72, 61–71.

    Google Scholar 

  • Linder, M. E., and Gilman, A. G. (1992). Sci. Am. 267, 56–65.

    Google Scholar 

  • Lomax, M. I., and Grossman, L. I. (1989). Trends Biochem. Sci. 14, 501–504.

    Google Scholar 

  • Lunardi, J., and Attardi, G. (1991). J. Biol. Chem. 266, 16534–16540.

    Google Scholar 

  • Martin, M. E., Chinenov, Y., Yu, M., Schmidt, T. K., and Yang, X.-Y. (1996). J. Biol. Chem. 271, 25617–25623.

    Google Scholar 

  • McNabb, D. S., Xing, Y., and Guarente, L. (1995). Genes Dev. 9, 47–58.

    Google Scholar 

  • Moraes, C. T., Shanske, S., Tritschler, H.-J., Aprille, J. R., Andreetta, F., Bonilla, E., Schon, E. A., and DiMauro, S. (1991). Am. J. Hum. Genet. 48, 492–501.

    Google Scholar 

  • Olson, E. N. (1993). Mol. Endocrinol. 7, 1369–1378.

    Google Scholar 

  • Parisi, M. A., and Clayton, D. A. (1991). Science 252, 965–969.

    Google Scholar 

  • Parisi, M. A., Xu, B., and Clayton, D. A. (1993). Mol. Cell. Biol. 13, 1951–1961.

    Google Scholar 

  • Scarpulla, R. C. (1996). Trends Cardiovasc. Med. 6, 39–45.

    Google Scholar 

  • Scarpulla, R. C., Kilar, M. C., and Scarpulla, K. M. (1986). J. Biol. Chem. 261, 4660–4662.

    Google Scholar 

  • Seelan, R. S., Gopalakrishnan, L., Scarpulla, R. C., and Grossman, L. I. (1996). J. Biol. Chem. 271, 2112–2120.

    Google Scholar 

  • Shadel, G. S., and Clayton, D. A. (1993). J. Biol. Chem. 268, 16083–16086.

    Google Scholar 

  • Shyjan, A. W., and Butow, R. A. (1993). Curr. Biol. 3, 398–400.

    Google Scholar 

  • Suzuki, H., Hosokawa, Y., Toda, H., Nishikimi, M., and Ozawa, T. (1990). J. Biol. Chem. 265, 8159–8163.

    Google Scholar 

  • Suzuki, H., Hosokawa, Y., Nishikimi, M., and Ozawa, T. (1991). J. Biol. Chem. 266, 2333–2338.

    Google Scholar 

  • Suzuki, H., Suzuki, S., Kumar, S., and Ozawa, T. (1995). Biochem. Biophys. Res. Commun. 213, 204–210.

    Google Scholar 

  • Thompson, C. C., Brown, T. A., and McKnight, S. L. (1991). Science 253, 762–768.

    Google Scholar 

  • Tomura, H., Endo, H., Kagawa, Y., and Ohta, S. (1990). J. Biol. Chem. 265, 6525–6527.

    Google Scholar 

  • Torroni, A., Stepien, G., Hodge, J. A., and Wallace, D. C. (1990). J. Biol. Chem. 265, 20589–20593.

    Google Scholar 

  • Villena, J. A., Martin, I., Viñas, O., Cormand, B., Iglesias, R., Mampel, T., Giralt, M., and Villarroya, F. (1994). J.Biol. Chem. 269, 32649–32654.

    Google Scholar 

  • Virbasius, J. V., and Scarpulla, R. C. (1991). Mol. Cell. Biol. 11, 5631–5638.

    Google Scholar 

  • Virbasius, J. V., and Scarpulla, R. C. (1994). Proc. Natl. Acad. Sci. USA 91, 1309–1313.

    Google Scholar 

  • Virbasius, C. A., Virbasius, J. V., and Scarpulla, R. C. (1993a). Genes Dev. 7, 2431–2445.

    Google Scholar 

  • Virbasius, J. V., Virbasius, C. A., and Scarpulla, R. C. (1993b). Genes Dev. 7, 380–392.

    Google Scholar 

  • Wallace, D. C. (1992). Annu. Rev. Biochem. 61, 1175–1212.

    Google Scholar 

  • Wan, B., and Moreadith, R. W. (1995). J. Biol. Chem. 270, 26433–26440.

    Google Scholar 

  • Wasylyk, B., Hahn, S. L., and Giovane, A. (1993). Eur. J. Biochem. 211, 7–18.

    Google Scholar 

  • Watanabe, H., Sawada, J.-I., Yano, K.-I., Yamaguchi, K., Goto, M., and Handa, H. (1993). Mol. Cell. Biol. 13, 1385–1391.

    Google Scholar 

  • Williams, R. S., Garcia-Moll, M., Mellor, J., Salmons, S., and Harlan, W. (1987). J. Biol. Chem. 262, 2764–2767.

    Google Scholar 

  • Wrutniak, C., Cassar-Malek, I., Marchal, S., Rascle, A., Heusser, S., Keller, J. M., Flechon, J., Dauca, M., Samarut, J., Ghysdael, J., and Cabello, G. (1995). J. Biol. Chem. 270, 16347–16354.

    Google Scholar 

  • Zeviani, M., Servidei, S., Gellera, C., Bertini, E., DiMauro, S., and DiDonato, S. (1989). Nature 339, 309–311.

    Google Scholar 

  • Zitomer, R. S., and Lowry, C. V. (1992). Microbiol. Rev. 56, 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarpulla, R.C. Nuclear Control of Respiratory Chain Expression in Mammalian Cells. J Bioenerg Biomembr 29, 109–119 (1997). https://doi.org/10.1023/A:1022681828846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022681828846

Navigation