Abstract
Most discussions of the relationships between crystal solubility and particle size have hitherto been concerned with vapor condensation and have led to the prediction that the vapor pressure increases with curvature. Here, thermodynamic arguments are presented to show that such relationships, describing crystal solubility as a function of particle size, originally put forward by Ostwald and later corrected by Freundlich, may be unjustified for determining interfacial tension at solid–liquid interfaces. The Kelvin or Gibbs–Thomson equations are valid for liquid–vapor systems, but not for solid–liquid interfaces. Recent experimental observations have demonstrated that interfacial tension data obtained by the solubility–size approach are unreasonable. This leads to the conclusion that “Ostwald ripening” may not be due to a higher solubility of smaller crystals, but rather to a net negative interfacial tension between solid and solution.
Similar content being viewed by others
REFERENCES
A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley, New York, 1997), p. 332.
J. W. Mullins, Crystallization, 3rd edn. (Butterworths-Heinemann, Oxford, 1993), p. 102.
A. G. Walton, The Formation and Properties of Precipitates (Wiley, New York, 1967).
W. Thomson, Phil. Mag. Suppl. 4, 42, 448 (1871).
W. Thomson, Proc. Roy. Soc. Edinburgh, 1870.
W. Ostwald, Z. Phys. Chem. 34, 495 (1900).
L. Harbury, J. Phys. Chem. 50, 190 (1946).
W. H. Wollaston, Phil. Trans. 103, 57 (1813).
P. Curie, Bull. Soc. Min. 8, 145 (1885).
J. W. Gibbs, Collected Works, Vol. I (Yale University Press, New Haven, CT, 1948).
R. v. Helmholtz, Wied. Ann. 27, 508 (1886).
J. C. Melrose, Langmuir 5, 290 (1989).
L. R. Fisher and J. N. Israelachvili, J. Colloid Interface Sci. 80, 528 (1981).
H. Freundlich, Kapillarchemie (Engelmann, Leipzig, 1909), p. 144.
H. Freundlich, Colloid and Capillary Chemistry (Dutton, New York, 1923), p. 153.
W. J. Jones, Ann. Phys. 41, 441 (1913).
W. J. Jones, Z. Phys. Chem. 82, 448 (1914).
M. L. Dundon and E. Mark, J. Am. Chem. Soc. 45, 2479 (1923).
G. A. Hulett, Z. Phys. Chem. 37, 385 (1919).
G. A. Hulett, Z. Phys. Chem. 47, 357 (1904).
G. A. Hulett, J. Am. Chem. Soc. 27, 49 (1905).
W. C. Mc. C. Lewis, Kolloid Z. 5, 91 (1909)
W. J. Jones and J. R. Partington, Phil. Mag. (Suppl. 6) 39, 35 (1915).
L. F. Knapp, Trans. Faraday Soc. 17, 457 (1921).
M. L. Dundon, J. Am. Chem. Soc. 45, 2658 (1923).
M. Jones and J. R. Partington, Chem. Soc. Trans. 32, 1019 (1915).
F. van Zeggeren and G. C. Benson, Can. J. Chem. 35, 1150 (1957).
B. V. Enüstün and J. Turkevich, J. Am. Chem. Soc. 82, 4502 (1960).
P. Schindler, H. Althaus, F. Hofer, and W. Minder, Helv. Chim. Acta 5, 1204 (1965).
P. Schindler, Heterogeneous equilibrium involving oxides, hydroxides, carbonates, and hydroxide carbonates, in: Equilibrium Concepts in Natural Water Systems, W. Stumm, ed. (Am. Chem. Soc. No. 67, 1967), pp. 196–221.
B. V. Enüstün, M. Enuysal, and M. Dosemeci, J. Coll. Interface Sci. 57, 143 (1971).
E. Cohn and J. J. A. Blekkingh, Z. Phys. Chem. A186, 257 (1940).
E. Cohn and J. J. A. Blekkingh, Proc. Acad. Sci. Amsterdam 43, 32, 189, 334 (1940).
A. R. Tourky and S. E. S. El Wakkad, J. Phys. Coll. Chem. 53, 1126 (1949).
D. Balarev, Z. Anorg. Chem. 145, 122 (1925); ibid. 151, 68 (1926).
J. J. Bikerman, Phys. Stat. Solutions 10, 3 (1965).
P. C. Hiemenz, Principles of Colloid and Surface Chemistry, 2nd edn. (Marcel Dekker, New York, 1986), p. 305.
W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd edn. (Wiley, New York, 1996), p.413.
W. Wu, R. F. Giese, and C. J. van Oss, Powder Technol. 89, 129 (1996).
L. A. Girifalco and R. J. Good, J. Phys. Chem. 61, 904 (1957)
C. J. van Oss, M. K. Chaudhury, and R. J. Good, Adv. Colloid Interface Sci. 28, 35 (1987).
C. J. van Oss, M. K. Chaudhury, and R. J. Good, Chem. Rev. 88, 927 (1988).
C. J. van Oss and R. J. Good, J. Macromol. Sci.-Chem. A26, 1183 (1989).
C. J. van Oss and R. J. Good, J. Dispersion Sci. Technol. 17, 433 (1996).
A. E. Nielsen and O. Söhnel, J. Crystal Growth 11, 233 (1971).
B. V. Derjaguin and L. D. Landau, Acta Physicochim. URSS 14, 633 (1941)
E. L. W. Verwey and J. Th. G. Overbeek, Theory of the Stablility of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
S. Ross and I. D. Morrison, Colloidal Systems and Interfaces (Wiley, New York, 1988).
L. Bergstrom, Adv. Colloid Interface Sci. 70, 125 (1997)
C. J. van Oss, S. N. Omenyi, and A. W. Neumann, Colloid Polym. Sci. 257, 737 (1979).
C. J. van Oss, D. R. Absolom, and A. W. Neumann, Colloids Surfaces 1, 45 (1980).
C. J. van Oss, L. Ju, R. J. Good, and M. K. Chaudhury, J. Protein Chem. 4, 245 (1989).
C. J. van Oss, Interfacial Forces in Aqueous Media (Marcel Dekker, New York, 1994).
R. F. Giese, W. Wu, and C. J. van Oss, J. Dispersion Sci. Technol. 17, 527 (1996).
G. H. Nancollas and W. Wu, J. Dispersion Sci. Technol., in press.
W. Ostwald, Lehrbuch der Allgemeinen Chemie, Vol. 2 (Engelmann, Leipzig, 1896), p. 444.
R. E. Liesegang, Z. Physik. Chem. 75, 374 (1911).
K. B. Lewis and B. D. Rather, J. Colloid Interface Sci. 159, 77 (1993).
H. Yasuda, T. Okuno, Y. Sawa, and T. Yasuda, Langmuir 11, 3255 (1995).
H. Zhuang, Quantitative surface spectroscopic analysis of multicomponent polymers, Ph.D. Dissertation, SUNY at Buffalo, Buffalo, New York, 1996.
N. V. Ibl and B. F. Dodge, Chem. Eng. Sci. 2, 120 (1953).
R. J. Good, Chem. Eng. Educ. 21, 94 (1987).
V. K. La Mer, Ind. Eng. Chem. 44, 1270 (1952).
R. Defay and I. Prigogine, Surface Tension and Adsorption (Wiley, New York, 1966).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wu, W., Nancollas, G.H. A New Understanding of the Relationship Between Solubility and Particle Size. Journal of Solution Chemistry 27, 521–531 (1998). https://doi.org/10.1023/A:1022678505433
Issue Date:
DOI: https://doi.org/10.1023/A:1022678505433