Skip to main content
Log in

A New Understanding of the Relationship Between Solubility and Particle Size

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Most discussions of the relationships between crystal solubility and particle size have hitherto been concerned with vapor condensation and have led to the prediction that the vapor pressure increases with curvature. Here, thermodynamic arguments are presented to show that such relationships, describing crystal solubility as a function of particle size, originally put forward by Ostwald and later corrected by Freundlich, may be unjustified for determining interfacial tension at solid–liquid interfaces. The Kelvin or Gibbs–Thomson equations are valid for liquid–vapor systems, but not for solid–liquid interfaces. Recent experimental observations have demonstrated that interfacial tension data obtained by the solubility–size approach are unreasonable. This leads to the conclusion that “Ostwald ripening” may not be due to a higher solubility of smaller crystals, but rather to a net negative interfacial tension between solid and solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley, New York, 1997), p. 332.

    Google Scholar 

  2. J. W. Mullins, Crystallization, 3rd edn. (Butterworths-Heinemann, Oxford, 1993), p. 102.

    Google Scholar 

  3. A. G. Walton, The Formation and Properties of Precipitates (Wiley, New York, 1967).

    Google Scholar 

  4. W. Thomson, Phil. Mag. Suppl. 4, 42, 448 (1871).

    Google Scholar 

  5. W. Thomson, Proc. Roy. Soc. Edinburgh, 1870.

  6. W. Ostwald, Z. Phys. Chem. 34, 495 (1900).

    Google Scholar 

  7. L. Harbury, J. Phys. Chem. 50, 190 (1946).

    Google Scholar 

  8. W. H. Wollaston, Phil. Trans. 103, 57 (1813).

    Google Scholar 

  9. P. Curie, Bull. Soc. Min. 8, 145 (1885).

    Google Scholar 

  10. J. W. Gibbs, Collected Works, Vol. I (Yale University Press, New Haven, CT, 1948).

    Google Scholar 

  11. R. v. Helmholtz, Wied. Ann. 27, 508 (1886).

    Google Scholar 

  12. J. C. Melrose, Langmuir 5, 290 (1989).

    Google Scholar 

  13. L. R. Fisher and J. N. Israelachvili, J. Colloid Interface Sci. 80, 528 (1981).

    Google Scholar 

  14. H. Freundlich, Kapillarchemie (Engelmann, Leipzig, 1909), p. 144.

    Google Scholar 

  15. H. Freundlich, Colloid and Capillary Chemistry (Dutton, New York, 1923), p. 153.

    Google Scholar 

  16. W. J. Jones, Ann. Phys. 41, 441 (1913).

    Google Scholar 

  17. W. J. Jones, Z. Phys. Chem. 82, 448 (1914).

    Google Scholar 

  18. M. L. Dundon and E. Mark, J. Am. Chem. Soc. 45, 2479 (1923).

    Google Scholar 

  19. G. A. Hulett, Z. Phys. Chem. 37, 385 (1919).

    Google Scholar 

  20. G. A. Hulett, Z. Phys. Chem. 47, 357 (1904).

    Google Scholar 

  21. G. A. Hulett, J. Am. Chem. Soc. 27, 49 (1905).

    Google Scholar 

  22. W. C. Mc. C. Lewis, Kolloid Z. 5, 91 (1909)

    Google Scholar 

  23. W. J. Jones and J. R. Partington, Phil. Mag. (Suppl. 6) 39, 35 (1915).

    Google Scholar 

  24. L. F. Knapp, Trans. Faraday Soc. 17, 457 (1921).

    Google Scholar 

  25. M. L. Dundon, J. Am. Chem. Soc. 45, 2658 (1923).

    Google Scholar 

  26. M. Jones and J. R. Partington, Chem. Soc. Trans. 32, 1019 (1915).

    Google Scholar 

  27. F. van Zeggeren and G. C. Benson, Can. J. Chem. 35, 1150 (1957).

    Google Scholar 

  28. B. V. Enüstün and J. Turkevich, J. Am. Chem. Soc. 82, 4502 (1960).

    Google Scholar 

  29. P. Schindler, H. Althaus, F. Hofer, and W. Minder, Helv. Chim. Acta 5, 1204 (1965).

    Google Scholar 

  30. P. Schindler, Heterogeneous equilibrium involving oxides, hydroxides, carbonates, and hydroxide carbonates, in: Equilibrium Concepts in Natural Water Systems, W. Stumm, ed. (Am. Chem. Soc. No. 67, 1967), pp. 196–221.

  31. B. V. Enüstün, M. Enuysal, and M. Dosemeci, J. Coll. Interface Sci. 57, 143 (1971).

    Google Scholar 

  32. E. Cohn and J. J. A. Blekkingh, Z. Phys. Chem. A186, 257 (1940).

    Google Scholar 

  33. E. Cohn and J. J. A. Blekkingh, Proc. Acad. Sci. Amsterdam 43, 32, 189, 334 (1940).

    Google Scholar 

  34. A. R. Tourky and S. E. S. El Wakkad, J. Phys. Coll. Chem. 53, 1126 (1949).

    Google Scholar 

  35. D. Balarev, Z. Anorg. Chem. 145, 122 (1925); ibid. 151, 68 (1926).

    Google Scholar 

  36. J. J. Bikerman, Phys. Stat. Solutions 10, 3 (1965).

    Google Scholar 

  37. P. C. Hiemenz, Principles of Colloid and Surface Chemistry, 2nd edn. (Marcel Dekker, New York, 1986), p. 305.

    Google Scholar 

  38. W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd edn. (Wiley, New York, 1996), p.413.

    Google Scholar 

  39. W. Wu, R. F. Giese, and C. J. van Oss, Powder Technol. 89, 129 (1996).

    Google Scholar 

  40. L. A. Girifalco and R. J. Good, J. Phys. Chem. 61, 904 (1957)

    Google Scholar 

  41. C. J. van Oss, M. K. Chaudhury, and R. J. Good, Adv. Colloid Interface Sci. 28, 35 (1987).

    Google Scholar 

  42. C. J. van Oss, M. K. Chaudhury, and R. J. Good, Chem. Rev. 88, 927 (1988).

    Google Scholar 

  43. C. J. van Oss and R. J. Good, J. Macromol. Sci.-Chem. A26, 1183 (1989).

    Google Scholar 

  44. C. J. van Oss and R. J. Good, J. Dispersion Sci. Technol. 17, 433 (1996).

    Google Scholar 

  45. A. E. Nielsen and O. Söhnel, J. Crystal Growth 11, 233 (1971).

    Google Scholar 

  46. B. V. Derjaguin and L. D. Landau, Acta Physicochim. URSS 14, 633 (1941)

    Google Scholar 

  47. E. L. W. Verwey and J. Th. G. Overbeek, Theory of the Stablility of Lyophobic Colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  48. S. Ross and I. D. Morrison, Colloidal Systems and Interfaces (Wiley, New York, 1988).

    Google Scholar 

  49. L. Bergstrom, Adv. Colloid Interface Sci. 70, 125 (1997)

    Google Scholar 

  50. C. J. van Oss, S. N. Omenyi, and A. W. Neumann, Colloid Polym. Sci. 257, 737 (1979).

    Google Scholar 

  51. C. J. van Oss, D. R. Absolom, and A. W. Neumann, Colloids Surfaces 1, 45 (1980).

    Google Scholar 

  52. C. J. van Oss, L. Ju, R. J. Good, and M. K. Chaudhury, J. Protein Chem. 4, 245 (1989).

    Google Scholar 

  53. C. J. van Oss, Interfacial Forces in Aqueous Media (Marcel Dekker, New York, 1994).

    Google Scholar 

  54. R. F. Giese, W. Wu, and C. J. van Oss, J. Dispersion Sci. Technol. 17, 527 (1996).

    Google Scholar 

  55. G. H. Nancollas and W. Wu, J. Dispersion Sci. Technol., in press.

  56. W. Ostwald, Lehrbuch der Allgemeinen Chemie, Vol. 2 (Engelmann, Leipzig, 1896), p. 444.

    Google Scholar 

  57. R. E. Liesegang, Z. Physik. Chem. 75, 374 (1911).

    Google Scholar 

  58. K. B. Lewis and B. D. Rather, J. Colloid Interface Sci. 159, 77 (1993).

    Google Scholar 

  59. H. Yasuda, T. Okuno, Y. Sawa, and T. Yasuda, Langmuir 11, 3255 (1995).

    Google Scholar 

  60. H. Zhuang, Quantitative surface spectroscopic analysis of multicomponent polymers, Ph.D. Dissertation, SUNY at Buffalo, Buffalo, New York, 1996.

    Google Scholar 

  61. N. V. Ibl and B. F. Dodge, Chem. Eng. Sci. 2, 120 (1953).

    Google Scholar 

  62. R. J. Good, Chem. Eng. Educ. 21, 94 (1987).

    Google Scholar 

  63. V. K. La Mer, Ind. Eng. Chem. 44, 1270 (1952).

    Google Scholar 

  64. R. Defay and I. Prigogine, Surface Tension and Adsorption (Wiley, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Nancollas, G.H. A New Understanding of the Relationship Between Solubility and Particle Size. Journal of Solution Chemistry 27, 521–531 (1998). https://doi.org/10.1023/A:1022678505433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022678505433

Navigation