Skip to main content
Log in

MD Simulation of an Infinitely Dilute Aqueous Solution of Formamide. Study of Thermodynamic, Structural, Dynamic, and Spectroscopic Properties

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A molecular dynamics simulation of an infinitely dilute aqueous solution of formamide was carried out using an MP2-CP ab initio potential to describe the solute–solvent interaction. Various static and dynamic properties were calculated using this potential obtained by fitting the formamide–water interaction energies to a 12-6-1 type function. These energies were calculated with the supermolecular approach by considering the MP2 correlation and the CP superposition. The values presented for the thermodynamic functions (ΔH S–W = −25.5 kcal-mol−1 and ΔG S–W = −15.9 kcal-mol−1), the structure of the first hydration layer (with 5 to 6 solvent molecules bonded to the solute), the solute's translational (D= 1.50 × 10−5 cm2-s−1) and rotational (τ = 6.6 ps) mobility in the surrounding medium, and the positions of the H···O hydrogen bond spectral bands corresponding to these motions (νi = 92, 246, 379, and 636 cm−1), are in agreement with the available results for this and other similar systems. In addition, the results are compared with those obtained by using parameters “transferred” from other systems. We observed that these values depend strongly on the potential used and concluded that it is advisable to avoid the use of such parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Carr and M. Parrinello, Phys. Rev. Lett. 55, 2475 (1985).

    Google Scholar 

  2. S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 (1981).

    Google Scholar 

  3. J. Gao, J. Phys. Chem. 96, 537 (1992).

    Google Scholar 

  4. B. J. Alber, and T. E. Winwright, J. Chem. Phys. 31, 459 (1959); N. Metropolis, and S. M. Ulan, J. Amer. Stat. Assoc. 44, 335 (1949).

    Google Scholar 

  5. P. G. Jensen, P. N. Day, M. S. Gordon, H. Basch, D. Cohen, D. R. Garmer, M. Kraus, and W. J. Stevens, Modeling the Hydrogen Bond, D. A. Smith, ed. (Amer. Chem. Soc. ACS Symp. Ser., 1994).

  6. N. Gresh, M. Leboeuf, and D. Salahub, Modeling the Hydrogen Bond, D. A. Smith, ed., (Amer. Chem. Soc. ACS Symp. Ser., 1994).

  7. J. C. Contador, M. L. Sánchez, M. A. Aguilar, and F. J. Olivares del Valle, J. Chem. Phys. 104, 5539 (1996).

    Google Scholar 

  8. W. L. Jorgensen and C. J. Swenson, J. Amer. Chem. Soc. 107, 1489 (1985).

    Google Scholar 

  9. H. Tanaka, H. Touhara, K. Nakanishi, and N. Watanabe, J. Chem. Phys. 80, 5170 (1984); R. A. Kuharski, and P. J. Rossky, J. Amer. Chem. Soc. 106, 5786 (1984); J. Sai, M. Gerstein, and M. Levitt, J. Chem. Phys. 104, 9417 (1996).

    Google Scholar 

  10. S. Cabani, P. Gianni, V. Mollica, and L. Lepori, J. Solution Chem. 10, 563 (1981).

    Google Scholar 

  11. W. L. Jorgensen and J. Tirado-Rives, J. Amer. Chem. Soc. 110, 1657 (1988).

    Google Scholar 

  12. E. Clementi, F. Cavallone, and R. Scordamaglia, J. Amer. Chem. Soc. 99, 5531 (1977); M. Ragazzi, D. R. Ferro, and E. Clementi, J. Chem. Phys. 70, 1040 (1979).

    Google Scholar 

  13. G. Bolis, and E. Clementi, J. Amer. Chem. Soc. 99, 5550 (1977); S. L. Price and A. J. Stone, J. Chem. Soc. Faraday Trans. 88, 1757 (1992).

    Google Scholar 

  14. Landolt-Bornstein, Numerical Data and Functional Relationship in Science and Technology. Heats of Mixing and Solution, Group IV, Vol. 2, Mischungs-Lösungswärmen, ed. (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  15. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

    Google Scholar 

  16. S. Boys and F. Bernardi, Mol. Phys. 19, 53 (1970).

    Google Scholar 

  17. S. Tolosa and J. A. Sansón, Chem. Phys. 213, 203 (1996); Chem. Phys. 251, 223 (1997).

    Google Scholar 

  18. J. A. Sanson, Doctoral Thesis, Universidad de Extremadura, Spain, 1999.

  19. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971); W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).

    Google Scholar 

  20. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian-92 Revision D.3 (Gaussian Inc., Pittsburgh, Pennsylvania, 1992).

    Google Scholar 

  21. J. A. Sordo, M. Probst, G. Corongiu, S. Chim, and E. Clementi, J. Amer. Chem. Soc. 109, 1702 (1987); S. Kin, M. S. Jhom, and H. A. Scheraga, J. Phys. Chem. 92, 7216 (1988).

    Google Scholar 

  22. A. J. Stone, The Theory of Intermolecular Forces (Clarendon Press, Oxford, 1996).

    Google Scholar 

  23. J. M. Haile, Molecular Dynamics Simulation. Elementary Methods (Wiley, New York, 1992); M. P. Allen, D. J. Tiddesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  24. M. Levitt and R. Sharon, Proc. Natl. Acad. Sci. U.S. 85, 7557 (1989).

    Google Scholar 

  25. G. Corongiu, IBM Corporation. Center for Scientific, Engineering Computation. Department 48B/428, Kingston, New York, 12401.

  26. D. Matsuoka, E. Clementi, and M. Yoshimina, J. Comp. Chem. 64, 1351 (1976).

    Google Scholar 

  27. P. Ewald, Ann. Phys. 64, 253 (1921).

    Google Scholar 

  28. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 237 (1977).

    Google Scholar 

  29. F. J. Harris, Proc. IEEE. 66, 51 (1978); P. H. Berens and K. R. Wilson, J. Chem. Phys. 74, 4872 (1981).

    Google Scholar 

  30. A. Engdahl and B. Nelander, J. Chem. Phys. 99, 4894 (1993).

    Google Scholar 

  31. M. J. Mitchell and J. A. McCammon, J. Comp. Chem. 12, 271 (1991).

    Google Scholar 

  32. D. H. Wertz, J. Amer. Chem. Soc. 102, 5316 (1980); A. Ben Nain and Y. Marcus, J. Chem. Phys. 81, 2016 (1984).

    Google Scholar 

  33. D. R. Lide, Handbook of Chemistry and Physic 72rd edn (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  34. E. V. Goldamer and H. G. Hertz, J. Chem. Phys. 74, 3734 (1970).

    Google Scholar 

  35. H. G. Hertz, Water-A Comprehensive Treatise, Vol. 3, F. Franks, ed., (Plenum, New York, 1993).

    Google Scholar 

  36. T. N. Nee and R. Zwanzing, J. Chem. Phys. 52, 6353 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolosa, S., Hidalgo, A. & Sansón, J.A. MD Simulation of an Infinitely Dilute Aqueous Solution of Formamide. Study of Thermodynamic, Structural, Dynamic, and Spectroscopic Properties. Journal of Solution Chemistry 28, 1087–1106 (1999). https://doi.org/10.1023/A:1022677327240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022677327240

Navigation