Skip to main content
Log in

Phase and Structural Modifications in Porous Silicon Under Pulse Heating

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The phase transitions in crystalline and amorphous porous silicon layers on silicon single crystal under isothermal or laser pulse nanosecond heating were modeled. The pulse heating was described as an adiabatic process by using a quasi-statistical approximation through homogeneous nucleation and growth of a new phase. The calculation of the free energy of porous silicon for cylindrical, spherical, and complex structures of the pores and its dependence on the pore radius, overall porosity, and thermoelastic stresses was made. The equilibrium free energy increased to 0.15 and 0.09 eV, with a corresponding decrease in melting temperature of 400 and 300 K for crystalline and amorphous porous silicon, respectively. The Laplace pressure retards this shift no more than 10 K. The possibility of epitaxial silicon layer formation (0.1 to 1.2 μm thick) on porous silicon after pulse heating (30 ns; beam density from 2 to 10 kJ·m−2) is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. M. Fauchet, J. von Behren, K. D. Hirschman, L. Tsybeskov, and S. P. Duttagupta, Phys. Stat. Solidi A 165:3 (1998).

    Google Scholar 

  2. R. Herino, A. Perio, K. Barla, and G. Bomchil, Mater. Lett. 2:519 (1984).

    Google Scholar 

  3. F. Moller, M. Ben Chorin, and F. Koch, Thin Solid Films 255:16 (1995).

    Google Scholar 

  4. N. Hadj Zoubir, M. Vergnat, T. Delatour, A. Burneau, Ph. de Donato, and O. Barres, Thin Solid Films 255:228 (1995).

    Google Scholar 

  5. W. Lange, P. Steiner, F. Kozlowski, and P. Ramm, Thin Solid Films 255:224 (1995).

    Google Scholar 

  6. V. Petrova-Koc, T. Muschik, A. Kux, B. K. Meger, F. Koch, and V. Lehmann, Appl. Phys. Lett. 61:943 (1992).

    Google Scholar 

  7. V. A. Labunov, V. P. Bondarenko, V. E. Borisenko, and A. M. Dorofeev, Phys. Stat. Solidi A 102:193 (1987).

    Google Scholar 

  8. T. Yasumatsu, T. Ito, H. Nishizawa, and A. Hiraki, Appl. Surf. Sci. 48/49:414 (1991).

    Google Scholar 

  9. U. Gruning and A. Yelon, Thin Solid Films 255:135(1995).

    Google Scholar 

  10. M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, J. Appl. Phys. 75:651 (1994).

    Google Scholar 

  11. L. N. Aleksandrov, in Polycrystalline Semiconductor, Proc. Phys., Vol. 35 (Springer, Berlin, 1989), pp. 270–282.

    Google Scholar 

  12. L. N. Aleksandrov and P. L. Novikov, Phys. Stat. Solidi A 158:419 (1996).

    Google Scholar 

  13. F. Spaepen and D. Turnbull, in Laser Annealing in Semiconductors (Academic Press, New York, 1982), p. 15.

    Google Scholar 

  14. L. N. Aleksandrov, Progr. Crystal Growth Charact. Mater. 24:53 (1992).

    Google Scholar 

  15. L. N. Aleksandrov and P. L. Novikov, Thin Solid Films 330:102 (1998).

    Google Scholar 

  16. L. N. Aleksandrov and P. L. Novikov, Comput. Mater. Sci. 10:406 (1998).

    Google Scholar 

  17. G. Gasele, J. Linsmeier, V. Drach, J. Fricke, and R. Arensfischer, J. Phys. D. Appl. Phys. 30:2911 (1997).

    Google Scholar 

  18. H. Baumgart, R. C. Frey, F. Philip, and H. J. Leamy, in Comparison of Thin Film Transistor and SOI Technologies, H. W. Lam and M. J. Thompson, eds. (Elsevier, Amsterdam, 1984), pp. 63–68.

    Google Scholar 

  19. L. N. Aleksandrov, V. Ju. Balandin, A. V. Dvurechenskii, and O. A. Kulyasova, Thin Solid Films 171:235 (1989).

    Google Scholar 

  20. L. N. Aleksandrov, Progr. Gryst. Growth Charact. 9:227 (1984).

    Google Scholar 

  21. Yu. A. Manzhosov, A. V. Dvurechenskii, and S. I. Romanov, Patent USSR No. 1637599 (Moscow, 1991).

  22. A. Halimaoui, Y. Campidelli, A. Larre, and D. Bensahel, Phys. Stat. Solidi B 190:35 (1995).

    Google Scholar 

  23. A. N. Kolmogorov, Izv. Akad. Nauk SSSR Ser. Math. 3:355 (1937).

    Google Scholar 

  24. L. N. Aleksandrov, Growth of Crystalline Semiconductor Materials on Crystal Surfaces (Elsevier, Amsterdam-Oxford-New York-Tokyo, 1984), p. 215.

    Google Scholar 

  25. V. Z. Belenkii, Geometrical Probability Models of Crystallization (Nauka, Moscow, 1980).

    Google Scholar 

  26. L. N. Aleksandrov, Kinetics of Crystallization and Regrowth of Semiconductor Films (Nauka, Novosibirsk, 1985).

    Google Scholar 

  27. A. Lietoila, R. B. Gold, and J. F. Gibbons, Appl. Phys. Lett. 39:810 (1981).

    Google Scholar 

  28. T. Ning and C. Hilsum (eds.), Properties of Silicon, EMIS Data Review Series No. 4 (INSPEC, London-New York, 1988).

    Google Scholar 

  29. P. J. Timans, in Advances in Rapid Thermal and Integrated Processing, NATO ASI Ser. E Appl. Sci. Vol. 118, F. Rooseboom, ed. (Kluwer, Dordrecht-Boston-London, 1996), pp. 35–101.

    Google Scholar 

  30. G. Benedetto, L. Boarino, and R. Spagnolo, Appl. Phys. A Mater. Sci. Process. 65:155 (1977).

    Google Scholar 

  31. S. Frohnhoff, R. Arens-Fischer, T. Heinrich, J. Fricke, M. Arntzen, and W. Theiss, Thin Solid Films 255:115 (1995).

    Google Scholar 

  32. T. L. Lin, S. C. Chen, K. L. Wang, and S. Iyer, in Semiconductor on Insulator and Thin Film Transistor Technology, A. Chang, M. W. Geis, and L. Pfeifer, eds. (MRS, Pittsburgh, 1986), pp. 193–197.

    Google Scholar 

  33. L. N. Aleksandrov, P. L. Novikov, A. V. Dvurechenskii, and V. A. Zinovyev, in Extended Abstracts Int. Conf. Porous Semiconduct. Sci. Technol. (University of Valencia, Spain, 1998), pp. 123–124.

    Google Scholar 

  34. P. L. Novikov, L. N. Aleksandrov, A. V. Dvurechenskii, and V. A. Zinov'ev, JETP Lett. 67:539 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, L.N. Phase and Structural Modifications in Porous Silicon Under Pulse Heating. International Journal of Thermophysics 20, 1223–1235 (1999). https://doi.org/10.1023/A:1022675408684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022675408684

Navigation