Skip to main content

Tests of Predictive Viscosity Models for Pure Liquids

Abstract

It is of considerable importance to be able to predict accurately the viscosity of liquids over a wide range of conditions. In the present work, the ability of the three-parameter generalized corresponding states principle (GCSP) for the prediction of the viscosity of pure liquids is demonstrated. The viscosity of six different classes of pure liquids, viz., alkanes (19 compounds; 207 data points), cycloalkanes (6 compounds; 74 data points), alkenes (9 compounds; 146 data points), aromatics (4 compounds; 123 data points), alkanols (8 compounds; 89 data points), and esters (4 compounds; 28 data points) have been predicted over a wide range of temperatures using the three-parameter (T c, P c, θ) GCSP. Five options for the third parameter (θ) were studied, viz., Pitzer's acentric factor ω, molar mass M, characteristic viscosity η*, critical compressibility factor Z c, and modified acentric factor Ω, in addition to groups ωZ c and ΩZ c being treated as composite third parameters. Pressure effects were neglected. Good agreement between experimental and predicted values of viscosity was obtained, especially with either ω or η* being used as the third parameter. Furthermore, the viscosities of alkanes predicted by the TRAPP method and an empirical, generalized one-parameter model for liquid hydrocarbons provide comparisons with the more accurate GCSP method. The GCSP provides a simple and yet a powerful technique for the correlation and prediction of viscosities of a variety of pure liquids over a wide range of temperatures.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. A. K. Mehrotra, W. D. Monnery, and W. Y. Svrcek, Fluid Phase Equil. 117:344 (1996).

    Google Scholar 

  2. Y. S. Touloukian, S. C. Saxena, and P. Hestermaus, Thermophysical Properties of Matter—TPRC Data Series, II. Viscosity (Purdue Research Foundation, Purdue University, West Lafayette, 1975).

    Google Scholar 

  3. T. Sridhar, in Fluids in Motion, N. P. Cheremisinoff, ed. (Ann Arbor Press, Ann Arbor, Michigan, 1983), Chap. 1.

    Google Scholar 

  4. K. Stephan and K. D. Lucas, Viscosity of Dense Fluids (Plenum Press, New York, 1979).

    Google Scholar 

  5. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987), Chap. 9.

    Google Scholar 

  6. D. S. Viswanath and G. Natarajan, Data Book on the Viscosity of Liquids (Hemisphere, New York, 1989).

    Google Scholar 

  7. W. D. Monnery, W. Y. Svrcek, and A. K. Mehrotra, Can. J. Chem. Eng. 73:3 (1995).

    Google Scholar 

  8. M. J. Tham and K. E. Gubbins, Ind. Eng. Chem. Fundam. 8:791 (1969).

    Google Scholar 

  9. J. M. Haile, K. C. Mo, and K. E. Gubbins, Adv. Cryogen. Eng. 21:501 (1976).

    Google Scholar 

  10. J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fundam. 20:323 (1981).

    Google Scholar 

  11. J. F. Ely and H. J. M. Hanley, A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures, NBS Tech. Note 1039 (U.S. Government Printing Office, Washington, DC, 1981).

    Google Scholar 

  12. W. D. Monnery, A. K. Mehrotra, and W. Y. Svrcek, Can. J. Chem. Eng. 69:123 (1991).

    Google Scholar 

  13. M. J. Hwang and W. B. Whiting, Ind. Eng. Chem. Res. 26:1758 (1987).

    Google Scholar 

  14. K. S. Pedersen, A. Fredenslund, P. L. Christensen, and P. Thomassen, Chem. Eng. Sci. 39:1011 (1984).

    Google Scholar 

  15. A. S. Teja, N. C. Patel, and S. I. Sandler, Chem. Eng. J. 21:21 (1981).

    Google Scholar 

  16. A. S. Teja and P. Rice, Ind. Eng. Chem. Fundam. 20:77 (1981).

    Google Scholar 

  17. A. S. Teja and P. A. Thurner, Chem. Eng. Commun. 49:69 (1986).

    Google Scholar 

  18. B. Willman and A. S. Teja, Chem. Eng. J. 37:65 (1988).

    Google Scholar 

  19. B. Willman and A. S. Teja, Chem. Eng. J. 37:71 (1988).

    Google Scholar 

  20. K. Aasberg-Petersen, K. Knudsen, and A. Fredenslund, Fluid Phase Equil. 70:293 (1991).

    Google Scholar 

  21. K. J. Okeson and R. I. Rowley, Int. J. Thermophys. 12:119 (1991).

    Google Scholar 

  22. A. K. Mehrotra, Ind. Eng. Chem. Res. 30:420 (1991).

    Google Scholar 

  23. A. K. Mehrotra, Ind. Eng. Chem. Res. 30:1367 (1991).

    Google Scholar 

  24. J. Allan and A. S. Teja, Can. J. Chem. Eng. 69:986 (1991).

    Google Scholar 

  25. A. K. Mehrotra, Can. J. Chem. Eng. 72: 554 (1994).

    Google Scholar 

  26. H. Orbey and S. I. Sandler, Can. J. Chem. Eng. 71:437 (1993).

    Google Scholar 

  27. C. H. Twu, J. E. Coon, and J. R. Cunningham, Fluid Phase Equil. 96:19 (1994).

    Google Scholar 

  28. J. O. Valderrama, H. Dela Puente, and A. A. Ibrahim, Fluid Phase Equil. 93:377 (1994).

    Google Scholar 

  29. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987), pp. 441-455, 656–732.

    Google Scholar 

  30. R. C. Wilhoit and B. J. Zwolinski, Handbook of Vapor Pressures and Heats of Vaporization of Hydrocarbons and Related Compounds (Thermodynamics Research Center, Texas, 1971).

    Google Scholar 

  31. T. Boublik, V. Fried, and E. Hala, The Vapour Pressures of Pure Substances (Elsevier, Amsterdam, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Das, S.K., Singh, R.P. Tests of Predictive Viscosity Models for Pure Liquids. International Journal of Thermophysics 20, 815–823 (1999). https://doi.org/10.1023/A:1022674917267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022674917267

  • alkanes
  • alkanols
  • alkenes
  • aromatics
  • corresponding states
  • cycloalkanes
  • esters
  • liquids
  • viscosity