Abstract
It is of considerable importance to be able to predict accurately the viscosity of liquids over a wide range of conditions. In the present work, the ability of the three-parameter generalized corresponding states principle (GCSP) for the prediction of the viscosity of pure liquids is demonstrated. The viscosity of six different classes of pure liquids, viz., alkanes (19 compounds; 207 data points), cycloalkanes (6 compounds; 74 data points), alkenes (9 compounds; 146 data points), aromatics (4 compounds; 123 data points), alkanols (8 compounds; 89 data points), and esters (4 compounds; 28 data points) have been predicted over a wide range of temperatures using the three-parameter (T c, P c, θ) GCSP. Five options for the third parameter (θ) were studied, viz., Pitzer's acentric factor ω, molar mass M, characteristic viscosity η*, critical compressibility factor Z c, and modified acentric factor Ω, in addition to groups ωZ c and ΩZ c being treated as composite third parameters. Pressure effects were neglected. Good agreement between experimental and predicted values of viscosity was obtained, especially with either ω or η* being used as the third parameter. Furthermore, the viscosities of alkanes predicted by the TRAPP method and an empirical, generalized one-parameter model for liquid hydrocarbons provide comparisons with the more accurate GCSP method. The GCSP provides a simple and yet a powerful technique for the correlation and prediction of viscosities of a variety of pure liquids over a wide range of temperatures.
This is a preview of subscription content, access via your institution.
REFERENCES
A. K. Mehrotra, W. D. Monnery, and W. Y. Svrcek, Fluid Phase Equil. 117:344 (1996).
Y. S. Touloukian, S. C. Saxena, and P. Hestermaus, Thermophysical Properties of Matter—TPRC Data Series, II. Viscosity (Purdue Research Foundation, Purdue University, West Lafayette, 1975).
T. Sridhar, in Fluids in Motion, N. P. Cheremisinoff, ed. (Ann Arbor Press, Ann Arbor, Michigan, 1983), Chap. 1.
K. Stephan and K. D. Lucas, Viscosity of Dense Fluids (Plenum Press, New York, 1979).
R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987), Chap. 9.
D. S. Viswanath and G. Natarajan, Data Book on the Viscosity of Liquids (Hemisphere, New York, 1989).
W. D. Monnery, W. Y. Svrcek, and A. K. Mehrotra, Can. J. Chem. Eng. 73:3 (1995).
M. J. Tham and K. E. Gubbins, Ind. Eng. Chem. Fundam. 8:791 (1969).
J. M. Haile, K. C. Mo, and K. E. Gubbins, Adv. Cryogen. Eng. 21:501 (1976).
J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fundam. 20:323 (1981).
J. F. Ely and H. J. M. Hanley, A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures, NBS Tech. Note 1039 (U.S. Government Printing Office, Washington, DC, 1981).
W. D. Monnery, A. K. Mehrotra, and W. Y. Svrcek, Can. J. Chem. Eng. 69:123 (1991).
M. J. Hwang and W. B. Whiting, Ind. Eng. Chem. Res. 26:1758 (1987).
K. S. Pedersen, A. Fredenslund, P. L. Christensen, and P. Thomassen, Chem. Eng. Sci. 39:1011 (1984).
A. S. Teja, N. C. Patel, and S. I. Sandler, Chem. Eng. J. 21:21 (1981).
A. S. Teja and P. Rice, Ind. Eng. Chem. Fundam. 20:77 (1981).
A. S. Teja and P. A. Thurner, Chem. Eng. Commun. 49:69 (1986).
B. Willman and A. S. Teja, Chem. Eng. J. 37:65 (1988).
B. Willman and A. S. Teja, Chem. Eng. J. 37:71 (1988).
K. Aasberg-Petersen, K. Knudsen, and A. Fredenslund, Fluid Phase Equil. 70:293 (1991).
K. J. Okeson and R. I. Rowley, Int. J. Thermophys. 12:119 (1991).
A. K. Mehrotra, Ind. Eng. Chem. Res. 30:420 (1991).
A. K. Mehrotra, Ind. Eng. Chem. Res. 30:1367 (1991).
J. Allan and A. S. Teja, Can. J. Chem. Eng. 69:986 (1991).
A. K. Mehrotra, Can. J. Chem. Eng. 72: 554 (1994).
H. Orbey and S. I. Sandler, Can. J. Chem. Eng. 71:437 (1993).
C. H. Twu, J. E. Coon, and J. R. Cunningham, Fluid Phase Equil. 96:19 (1994).
J. O. Valderrama, H. Dela Puente, and A. A. Ibrahim, Fluid Phase Equil. 93:377 (1994).
R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1987), pp. 441-455, 656–732.
R. C. Wilhoit and B. J. Zwolinski, Handbook of Vapor Pressures and Heats of Vaporization of Hydrocarbons and Related Compounds (Thermodynamics Research Center, Texas, 1971).
T. Boublik, V. Fried, and E. Hala, The Vapour Pressures of Pure Substances (Elsevier, Amsterdam, 1973).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Das, S.K., Singh, R.P. Tests of Predictive Viscosity Models for Pure Liquids. International Journal of Thermophysics 20, 815–823 (1999). https://doi.org/10.1023/A:1022674917267
Issue Date:
DOI: https://doi.org/10.1023/A:1022674917267
- alkanes
- alkanols
- alkenes
- aromatics
- corresponding states
- cycloalkanes
- esters
- liquids
- viscosity