Skip to main content
Log in

Zinc(II) Hydration in Aqueous Solution: A Raman Spectroscopic Investigation and An ab initio Molecular Orbital Study of Zinc(II) Water Clusters

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Raman spectra of aqueous Zn(II)–perchlorate solutions were measured over broad concentration (0.50–3.54 mol-L−1) and temperature (25–120°C) ranges. The weak polarized band at 390 cm−1 and two depolarized modes at 270 and 214 cm−1 have been assigned to ν1(a 1g), ν2(e g), and ν5(f 2g) of the zinc–hexaaqua ion. The infrared-active mode at 365 cm−1 has been assigned to ν3(f 1u). The vibrational analysis of the species [Zn(OH2) +2 ] was done on the basis of O h symmetry (OH2 as point mass). The polarized mode ν1(a 1g)-ZnO6 has been followed over the full temperature range and band parameters (band maximum, full width at half height, and intensity) have been examined. The position of the ν1(a 1g)-ZnO6 mode shifts only about 4 cm−1 to lower frequencies and broadens by about 32 cm−1 for a 95°C temperature increase. The Raman spectroscopic data suggest that the hexaaqua–Zn(II) ion is thermodynamically stable in perchlorate solution over the temperature and concentration range measured. These findings are in contrast to ZnSO4 solutions, recently measured by one of us, where sulfate replaces a water molecule of the first hydration sphere. Ab initio geometry optimizations and frequency calculations of [Zn(OH2) +2 ] were carried out at the Hartree–Fock and second-order Møller–Plesset levels of theory, using various basis sets up to 6-31 + G*. The global minimum structure of the hexaaqua–Zn(II) species corresponds with symmetry T h. The unscaled vibrational frequencies of the [Zn(OH2) +2 ] are reported. The unscaled vibrational frequencies of the ZnO6, unit are lower than the experimental frequencies (ca. 15%), but scaling the frequencies reproduces the measured frequencies. The theoretical binding enthalpy for [Zn(OH2) +2 ] was calculated and accounts for ca. 66% of the experimental single-ion hydration enthalpy for Zn(II).Ab initio geometry optimizations and frequency calculations are also reported for a [Zn(OH2) 182 ] (Zn[6 + 12]) cluster with 6 water molecules in the first sphere and 12 in the second sphere. The global minimum corresponds with T symmetry. Calculated frequencies of the zinc [6 + 12] cluster correspond well with the observed frequencies in solution. The ν1-ZnO6 (unscaled) mode occurs at 388 cm−1 almost in perfect correspondence to the experimental value. The theoretical binding enthalpy for [Zn(OH2) 182 ] was calculated and is very close to the experimental single ion-hydration enthalpy for Zn(II). The water molecules of the first sphere form strong hydrogen bonds with water molecules in the second hydration shell because of the strong polarizing effect of the Zn(II) ion. The importance of the second hydration sphere is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. E. Irish and M. H. Brooker, Advances in Infrared and Raman Spectroscopy, Vol. 2 R. J. H. Clark and R. E. Hester, Eds., (Heyden, London, 1976), p. 212.

    Google Scholar 

  2. M. H. Brooker, in The Chemical Physics of Solvation, Part B. Spectroscopy of Solvation, R. R. Dogonadze, E. Kalman, A. A. Kornyshev, and J. Ulstrup, eds. (Elsevier, Amsterdam, 1986), p. 119.

    Google Scholar 

  3. M. Moskovits, Proc. 5th Int. Conf. Raman Spectrosc., Freiburg, Germany, 2–8 September, 1976, p. 768.

  4. K. H. Michaellian, M. Moskovits, Nature 273, 135 (1978).

    Google Scholar 

  5. C. P. Nash, T. C. Donnelly, and P. A. Rock, J. Solution Chem. 6, 663 (1977).

    Google Scholar 

  6. J. T. Bulmer, D. E. Irish, and L. Oedberg, Can. J. Chem. 53, 3806 (1975).

    Google Scholar 

  7. D. E. Irish and T. Jarv, Chem. Soc. Faraday Discuss., pp. 64, 95, and 120 (1978).

  8. F. Rull, Ch. Balarev, J. L. Alvarez, F. Sobron, and A. Rodriguez, J. Raman Spectrosc. 25, 933 (1994).

    Google Scholar 

  9. G. E. Walrafen, J. Chem. Phys. 36, 1035 (1962) J. Chem. Phys. 44, 1546 (1966).

    Google Scholar 

  10. W. Rudolph, M. H. Brooker, and C. C. Pye, J. Phys. Chem. 99, 3793 (1995).

    Google Scholar 

  11. C. C. Pye, W. Rudolph, and R. A. Poirier, J. Phys. Chem. 100, 601 (1996).

    Google Scholar 

  12. M. H. Brooker, O. Faurskov Nielsen, and E. Praestgaard, J. Raman Spectrosc. 19, 71 (1988).

    Google Scholar 

  13. A. I. Vogel, A Textbook of Quantitative Inorganic Analysis, 3rd edn (Longmans, London, 1961).

    Google Scholar 

  14. W. Rudolph and G. Irmer, J. Solution Chem. 23, 663 (1994).

    Google Scholar 

  15. W. W. Rudolph, Z. Phys. Chem. 194, 73 (1996).

    Google Scholar 

  16. W. W. Rudolph, M. H. Brooker, and P. R. Tremaine, Z. Phys. Chem., 209, 181 (1999).

    Google Scholar 

  17. W. W. Rudolph, M. H. Brooker, and P. R. Tremaine, J. Solution. Chem. 26, 757 (1997).

    Google Scholar 

  18. W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657 (1969); (b) W. J. Pietro and W. J. Hehre, J. Comput. Chem. 4, 241 (1983).

    Google Scholar 

  19. J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Amer. Chem. Soc. 102, 939 (1980); (b) K. D. Dobbs and W. J. Hehre, J. Comp. Chem. 8, 880 (1987).

    Google Scholar 

  20. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).

    Google Scholar 

  21. S. Huzinaga, Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdam, 1985).

    Google Scholar 

  22. R. A. Poirier, M. R. Peterson, and A. Yadav, Mungauss Chemistry Department, Memorial University of Newfoundland, St. John's, Newfoundland.

  23. W. C. Davidon and L. Nazareth, Technical Memos 303 and 306, Applied Mathematics Division, Argonne National Laboratories, Argonne, IL, 1977. The algorithm is described in: W. C. Davidon, Math. Prog. 9, 1 (1975).

    Google Scholar 

  24. P. Cs'asz'ar and P. Pulay, J. Mol. Struct. 114, 31 (1975).

    Google Scholar 

  25. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, GAMES, Iowa State University, 17 July, 1993, Version, J. Comp. Chem. 14, 1347 (1993).

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian 92/DFT, Revision F.4, Gaussian, Inc., Pittsburgh, Pennsylvania, 1993.

    Google Scholar 

  27. C. I. Ratcliffe and D. E. Irish, Can. J. Chem. 62, 1134 (1984).

    Google Scholar 

  28. W. Rudolph and S. Schoenherr, Z. Phys. Chem. 270, 1121 (1989); (b) Z. Phys. Chem. 172, 31 (1991).

    Google Scholar 

  29. D. E. Irish and T. Jarv, J. Chem. Soc. Faraday Discuss., pp. 64, 95, and 120 (1978).

  30. H. Kanno and J. Hiraishi, J. Raman Spectrosc. 9, 85 (1980); (b) H. Kanno, J. Phys. Chem. 92, 4232 (1988).

    Google Scholar 

  31. T. E. Jenkins and J. Lewis, Spectrochim. Acta 37, 47 (1981).

    Google Scholar 

  32. D. W. James and J. M. Whitnall, J. Raman Spectrosc., 7, 225 (1978).

    Google Scholar 

  33. A. Laubereau, G. Wochner, W. Kaiser, W., Chem Phys. 28, 363 (1978), and references therein.

    Google Scholar 

  34. K. S. Schweizer and D. Chandler, J. Chem. Phys. 76, 2296 (1982).

    Google Scholar 

  35. S. M. George, H. Auweter and C. B. Harris, J. Chem. Phys. 73, 5573 (1980), and references therein.

    Google Scholar 

  36. J. E. Griffiths, M. Clerc, and P. M. Rentzepis, J. Chem. Phys. 60, 3824 (1974).

    Google Scholar 

  37. S. Petrucci, in Ionic Interactions 8, Vol. II (Academic Press, New York, 1971), Chap. 7, p. 39ff.

    Google Scholar 

  38. W. W. Rudolph, Ber. Bunsenges. Phys. Chem. 102, 183 (1998); (b) W. W. Rudolph and C. C. Pye, J. Phys. Chem. B, 102, 3564 (1998).

    Google Scholar 

  39. S. Lee, J. K. Kim, J. K. Park, and K. S. Kim, J. Phys. Chem. 100, 14329 (1996).

    Google Scholar 

  40. C. C. Pye and W. W. Rudolph, J. Phys. Chem. A, 102, 9933 (1998).

    Google Scholar 

  41. M. Pavlov, P. E. M. Siegbahn, and M. Sandström, J. Phys. Chem. A, 102, 219 (1998).

    Google Scholar 

  42. N. Ohtomo, K. Arakawa, M. Takeuchi, T. Yamaguchi, and H. Ohtaki, Bull. Chem. Soc. Jpn. 54, 1314(1981); cf. also Y. Marcus, Chem. Rev. 88, 1475 (1988).

    Google Scholar 

  43. R. Åkesson, L. G. M. Petterson, M. Sandström, and U. Wahlgreen, J. Amer. Chem. Soc. 116, 8693 (1994) (cf. p. 8697, Table 4).

    Google Scholar 

  44. R. R. Pappalardo and E. S. Marcos, J. Phys. Chem. 97, 4500 (1993).

    Google Scholar 

  45. Muñoz-Paez, R. R. Pappalardo, and E. S. Marcos, J. Amer. Chem. Soc. 117, 11710 (1995).

    Google Scholar 

  46. G. Licheri, G. Paschina, G. Piccaluga, and G. Pinna, Z. Naturforsch. 37a, 1205 (1982).

    Google Scholar 

  47. C. C. Pye, unpublished results, 1998.

  48. E. D. Glendening and D. Feller, J. Phys. Chem. 99, 3060 (1995); (b) D. Feller, E. D. Glendening, R. A. Kendall, and K. A. Peterson, J. Chem. Phys. 100, 4981 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, W.W., Pye, C.C. Zinc(II) Hydration in Aqueous Solution: A Raman Spectroscopic Investigation and An ab initio Molecular Orbital Study of Zinc(II) Water Clusters. Journal of Solution Chemistry 28, 1045–1070 (1999). https://doi.org/10.1023/A:1022673226331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022673226331

Navigation