Skip to main content
Log in

Scanning the Melting Curve of Tungsten by a Submicrosecond Wire-Explosion Experiment

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Measurements of temperature and density during a wire-explosion experiment at atmospheric pressure are described. The measurements encompass a parameter range from the solid to near the critical point. The influence of a polytetrafluoroethylene coating of the wire, necessary to prevent surface discharges, on the temperature and density measurements is investigated. The melting curve of tungsten up to 4000 K is detemined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. S. Hixson and M. A. Winkler, Int. J. Thermophys. 11:709 (1990).

    Google Scholar 

  2. U. Seydel and W. Kitzel, J. Phys. F Metal Phys. 9:L153 (1979).

    Google Scholar 

  3. E. Kaschnitz, G. Pottlacher, and L. Windholz, High Press. Res. 4:588 (1990).

    Google Scholar 

  4. A. I. Savvatimski, Int. J. Thermophys. 17:495 (1996).

    Google Scholar 

  5. A. W. Desilva and H. J. Kunze, Phys. Rev. E 49:4448 (1994); I. Krisch, Ph.D. thesis (University of Bochum, Germany, 1997).

    Google Scholar 

  6. H. Hess, Phys. Chem. Liq. 30:251 (1995).

    Google Scholar 

  7. A. Kloss, T. Motzke, R. Grossjohann, and H. Hess, Phys. Rev. E 54:5851 (1996).

    Google Scholar 

  8. A. Kloss, A. D. Rakhel, and H. Hess, Int. J. Thermophys. 19:983(1998).

    Google Scholar 

  9. Goodfellow No. W005148 and Advent No. W558711.

  10. NIST Standard Reference Database 38, NIST Spectroscopic Properties of Atoms and Atomic Ions Database (NIST, Gaithersburg, MD).

  11. E. Arpaci and M. G. Frohberg, Z. Metallkd. 75:614 (1984).

    Google Scholar 

  12. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (American Society for Metals, Metals Park, OH, 1972).

    Google Scholar 

  13. J. L. McClure and A. Cezairliyan, Int. J. Thermophys. 14:449 (1993).

    Google Scholar 

  14. J.-P. Hiernault, R. Beuker, M. Hoch, T. Matsui, and R. W. Ohse, High Temp.-High Press. 18:627 (1986).

    Google Scholar 

  15. H. Hess, A. Kloss, and H. Schneidenbach, Int. J. Thermophys. 20:1281 (1999).

    Google Scholar 

  16. R. E. Bedford, in Radiation Thermometry, D. P. DeWitt and G. D. Nutter, eds. (Wiley-Interscience, New York, 1988).

    Google Scholar 

  17. Encyclopedia for Polymer Science, 2nd ed. (1989), Vol. 1, p. 147.

  18. SESAME Library, T-1, MS-B221 (Los Alamos National Laboratory, Los Alamos, NM).

  19. L. F. Vereshchagin and N. S. Fateeva, JETP 28:797 (1969); D. A. Young, Phase Diagrams of the Elements (University of California Press, Berkeley, Los Angeles, Oxford, 1991), p. 175.

    Google Scholar 

  20. A. Berthault, L. Arles, and J. Matricon, Int. J. Thermophys. 7:167 (1986).

    Google Scholar 

  21. M. Musella, C. Ronchi, and M. Sheindlin, Int. J. Thermophys. 20:1177 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloss, A., Hess, H., Schneidenbach, H. et al. Scanning the Melting Curve of Tungsten by a Submicrosecond Wire-Explosion Experiment. International Journal of Thermophysics 20, 1199–1209 (1999). https://doi.org/10.1023/A:1022671307776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022671307776

Navigation