Skip to main content
Log in

Davenport's Theorem in the Theory of Irregularities of Point Distribution

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study distributions \(\mathcal{D}_N \) of N points in the unit square U 2 with minimal order of L 2-discrepancy ℒ2[\(\mathcal{D}_N \)] < C(log N)1/2, where the constant C is independent of N. We present an approach that uses Walsh functions and can be generalized to higher dimensions. Bibliography: 19 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Beck and W. W. L. Chen, "Irregularities of point distribution relative to convex polygons. III," J. London Math. Soc., 56, 222–230 (1997).

    Google Scholar 

  2. W. W. L. Chen, "On irregularities of distribution. II," Quart. J. Math. Oxford, 34, 257–279 (1983).

    Google Scholar 

  3. W. W. L. Chen and M. M. Skriganov, "Explicit constructions in the classical mean squares problem in irregu-larities of point distribution," Preprint, Macquarie University, Steklov Mathematical Institute, St. Petersburg (1999).

    Google Scholar 

  4. H. Davenport, "Note on irregularities of distribution," Mathematika, 3, 131–135 (1956).

    Google Scholar 

  5. N. M. Dobrovol'ski__, "An effective proof of Roth's theorem on quadratic dispersion," Uspekhi Mat. Nauk, 39, 155–156 (1984).

    Google Scholar 

  6. N. J. Fine, "On the Walsh functions," Trans. Amer. Math. Soc, 65, 373–414 (1949).

    Google Scholar 

  7. B. I. Golubov, A. V. Efimov, and V. A. Skvor_cov, The Walsh Series and Transformations. Theory and Applications[in Russian], Moscow (1987).

  8. J. H. Halton, "On the effciency of certain quasirandom sequences of points in evaluating multidimensional integrals," Num. Math., 2, 84–90 (1960).

    Google Scholar 

  9. J. M. Hammersley, "Monte Carlo methods for solving multivariable problems," Ann. New York Acad. Sci., 86, 844–874 (1960).

    Google Scholar 

  10. G. Larcher, "Point sets with minimal L2-discrepancy," Preprint, Salzburg University (1999).

  11. J. Matou_sek, Geometric Discrepancy, Springer-Verlag (1999).

  12. P. D. Proinov, "Symmetrization of the van der Corput generalized sequences," Proc. J. Acad. (A), 64, 159–162 (1988).

    Google Scholar 

  13. K. F. Roth, "On irregularities of distribution," Mathematika, 1, 73–79 (1954).

    Google Scholar 

  14. K. F. Roth, "On irregularities of distribution. II," Comm. Pure Appl. Math., 29, 749–754 (1976).

    Google Scholar 

  15. K. F. Roth, "On irregularities of distribution. III," Acta Arith., 35, 373–384 (1979).

    Google Scholar 

  16. K. F. Roth, "On irregularities of distribution. IV," Acta Arith., 37, 67–75 (1980).

    Google Scholar 

  17. F. Schipp, W. R. Wade, and P. Simon, Walsh Functions. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol-New York (1990).

    Google Scholar 

  18. M. M. Skriganov, "Lattices in algebraic number fields and uniform distributions modulo 1," Algebra Analiz, 1, No. 2, 207–228 (1989).

    Google Scholar 

  19. M. M. Skriganov, "Constructions of uniform distributions in terms of the geometry of numbers," Algebra Analiz, 6, No. 3, 200–230 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W.W.L., Skriganov, M.M. Davenport's Theorem in the Theory of Irregularities of Point Distribution. Journal of Mathematical Sciences 115, 2076–2084 (2003). https://doi.org/10.1023/A:1022668317029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022668317029

Keywords

Navigation