Skip to main content
Log in

Best Fourier Approximation and Application in Efficient Blurred Signal Reconstruction

  • Published:
Journal of Computational Analysis and Applications

Abstract

We expand upon the known results on sharp linear Fourier methods of approximation where the approximation is the best in terms of both rate and constant among all polynomial procedures of approximation. So far these results have been studied due to their mathematical beauty rather than their practical importance. In this paper we show that they are the core mathematics underlying best statistical methods of solving noisy ill-posed problems. In particular, we suggest a procedure for recovery of noisy blurred signals based on samples of small sizes where a traditional statistics concludes that the complexity of such a setting makes the problem not worthy of a further study. Thus, we present a problem where a combination of the classical approximation theory and statistics leads to interesting practical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. I. Akhiezer and M. G. Krein, On the best approximation of periodic functions, Dokl. Akad. Nauk SSSR 15, 107-111 (1937).

    Google Scholar 

  2. V. F. Babenko and S. A. Pichugov, Best linear approximation of certain classes of differentiable periodic functions, Math. Notes 27, 325-329 (1980).

    Google Scholar 

  3. S. N. Bernstein, On the best approximation of |x|p by means of polynomials of extremely high degree, Izv. Akad. Nauk SSSR 2, 169-180 (1938).

    Google Scholar 

  4. R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, New York, 1993.

    Google Scholar 

  5. V. K. Dzyadyk, On best approximation of the class of periodic functions with bounded sth derivative (0 < s < 1), Izv. Akad. Nauk SSSR 17, 135-162 (1953).

    Google Scholar 

  6. V. K. Dzyadyk, Best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotonic functions, Izv. Akad. Nauk SSSR 23, 933-950 (1959).

    Google Scholar 

  7. S. Efromovich and M. S. Pinsker, Learning algorithm for nonparametric filtering, Autom. Remote Control 11, 1434-1440 (1984).

    Google Scholar 

  8. S. Efromovich, Density estimation for the case of supersmooth measurement errors, J. Am. Stat. Assoc. 92, 526-535 (1997).

    Google Scholar 

  9. S. Efromovich, On nonparametric regression for iid observations in a general setting, Ann. Stat. 24, 1126-1143 (1996).

    Google Scholar 

  10. S. Efromovich and M. Pinsker, Sharp-optimal and adaptive estimator for heteroscedastic nonparametric regression, Stat. Sin. 6, 925-942 (1996).

    Google Scholar 

  11. M. Ermakov, Minimax estimation of the solution of an ill-posed convolution type problem, Probl. Inf. Transm. 25, 191-200 (1989).

    Google Scholar 

  12. J. Fan and Y. K. Truong, Nonparametric regression with errors in variables, Ann. Stat. 21, 1900-1925 (1993).

    Google Scholar 

  13. J. Favard, Sur l'approximation des functions periodiques par des polynomial-trigonometriques, Bull. Sci. Math. 61, 209-224, 243–256 (1936).

    Google Scholar 

  14. M. I. Ganzburg, On the best harmonic approximation of convolutions in L 1 and L , Sov. Math. (Izv. VUZ) 29, 22-27 (1985).

    Google Scholar 

  15. Y. V. Ingster, Minimax testing nonparametric hypotheses about density distributions in L p metrics, Theory Probab. Its Appl. 31, 384-389 (1986).

    Google Scholar 

  16. A. N. Kolmogorov, Zur Grossenordung des restgliedes Fourierscher Reihen differenzierbarer Funktionen, Ann. Math. 36, 107-110 (1935).

    Google Scholar 

  17. N. Korneichuk, Exact Constants in Approximation Theory, Cambridge Univ. Press, New York, 1991.

    Google Scholar 

  18. A. Korostelev and A. Tsybakov, Minimax Theory of Image Reconstruction, Springer-Verlag, New York, 1993.

    Google Scholar 

  19. E. L. Lehmann, Theory of Point Estimation, Wadsworth and Brooks, Pacific Grove, 1983.

    Google Scholar 

  20. S. M. Nikolskii, Mean approximation of functions by trigonometric polynomials, Izv. Akad. Nauk SSSR 10, 207-256 (1946).

    Google Scholar 

  21. R. J. Serfling, Approximations Theorems of Mathematical Statistics, Wiley, New York, 1980.

    Google Scholar 

  22. Yun-Shen Sun, On the best approximation of periodic differentiable functions by trigonometric polynomials, Izv. Akad. Nauk SSSR 25, 143-152 (1961).

    Google Scholar 

  23. V. M. Tikhomirov, Some Questions of Approximation Theory, Nauka, Moscow, 1976.

    Google Scholar 

  24. A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press, New York, 1963.

    Google Scholar 

  25. R. S. Varga and A. V. Carpenter, On the Bernstein conjecture in approximation theory, Constr. Approx. 1, 333-348 (1985).

    Google Scholar 

  26. A. Zygmund, Trigonometric Series, Cambridge Press, Cambridge, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efromovich, S., Ganzburg, M. Best Fourier Approximation and Application in Efficient Blurred Signal Reconstruction. Journal of Computational Analysis and Applications 1, 43–62 (1999). https://doi.org/10.1023/A:1022666503405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022666503405

Navigation