Skip to main content
Log in

Development of Bi(2223) Multifilamentary Tapes with Low ac Losses

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

A significant reduction of ac losses in twisted Bi(2223) multifilamentary tapes with Ag sheaths has been achieved by using oxide (BaZrO3 and SrZrO3) barriers between filaments. These barriers have two important effects: they increase the transverse resistivity, which suppresses induced coupling currents, and they reduce filament bridging, which in pure Ag sheath tapes largely cancels the beneficial effect of filament twisting. The decoupling can be gauged by the frequency at which loss shows a maximum in a low-amplitude ac field applied perpendicular to the tape. So far, the frequency of the loss maximum, f m, in Ag-sheathed tapes has been enhanced from 5 Hz (untwisted) to 82 Hz (11 mm in twist pitch length). Different ways to introduce oxide barriers in tapes with 19–95 filaments are presented. The critical current density in the filaments varied between 10,000 and 20,000 A/cm2. Ac loss measurements as well as the electrical and mechanical characterization are discussed in detail. The variation of the critical current density with bending strain is shown to be similar to that of tapes without barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Q. Li, G. N. Riley, Jr., R. D. Parrella, S. Fleshler, M. W. Rupich, W. L. Carter, J. O. Willis, J. Y. Coulter, J. F. Binggert, V. K. Sikka, J. A. Parrell, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 7, 2026 (1997)

    Google Scholar 

  2. R. Flükiger, G. Grasso, J. C. Grivel, F. Marti, M. Dhallé, and Y. Huang, Supercond. Sci. Technol. 10, A68 (1997).

    Google Scholar 

  3. K. Kwasnitza and S. Clerc, Physica C 233, 423 (1994).

    Google Scholar 

  4. Y. Yang, T. Hughes, D. M. Spiller, C. Beduz, M. Penny, R. G. Scurlock, P. Halder, and R. S. Sokolowski, Supercond. Sci. Technol. 9, 801 (1995).

    Google Scholar 

  5. H. Ishii, S. Hirano, T. Hara, J. Fujikami, and K. Sato, Cryogenics 36, 697 (1996).

    Google Scholar 

  6. Y. Fukumoto, H. J. Wiesmann, M. Garber, M. Suenaga, and P. Haldar, Appl. Phys. Lett. 67, 3180 (1995).

    Google Scholar 

  7. B. N. Hubert, R. Zhou, T. G. Holesingger, W. L. Hults, A. Lacerda, A. S. Murray, R. D. Ray II, C. M. Buford, L. G. Phillips, A. Kebede, and J. L. Smith, J. Electr. Mater. 24, 1869 (1995).

    Google Scholar 

  8. W. Goldacker, B. Ullmann, and A. Gäblerand Heller, Proc. of EUCAS'97, Inst. Phys. Conf. Ser. 158, 1223 (1997).

  9. Y. B. Huang, G. Grasso, F. Marti, M. Dhallé, G. Witz, S. Clerc, K. Kwasnitza, and R. Flükiger, Proc. of EUCAS'97, Inst. Phys. Conf. Ser. 158, 1385 (1997); and Y. B. Huang and R. Flükiger, Physica C 294, 71–82 (1998).

    Google Scholar 

  10. A. Erb, E. Walker, and R. Flükiger, Physica C 258, 9 (1996).

    Google Scholar 

  11. F. Marti, G. Grasso, Y. Huang, and R. Flükiger, IEEE Trans. Appl. Supercond. 7, 2215 (1997).

    Google Scholar 

  12. G. Grasso and R. Flükiger, presented at ISS'96, Oct., 21–24, 1996, Sapporo, Japan.

  13. F. Marti, G. Grasso, Y. B. Huang, R. Passerini, E. Giannini, and R. Flükiger, Supercond. Sci. Technol. (in press).

  14. M. Ciszek, S. P. Asworth, M. P. James, B. A. Glowaki, A. M. Campbell, R. Garré, and S. Conti, Supercond. Sci. Technol. 9, 379 (1996).

    Google Scholar 

  15. A. D. Caplin, A. V. Volkozub, M. Dhallé, A. Polcari, F. Marti, Y. B. Huang, and R. Flükiger, presented at ICMC'98, May, 10–13, 1998, Enschede, The Netherlands.

  16. Y. B. Huang, G. Witz, E. Giannini, and R. Flükiger, Supercond. Sci. Technol. (submitted).

  17. C. J. Christopherson and G. N. Riley, Jr., Appl. Phys. Lett. 66, 2277 (1995).

    Google Scholar 

  18. R. Zeng, H. K. Liu, and S. X. Dou, Physica C 300, 49 (1998).

    Google Scholar 

  19. M. Dhallé, A. Polcari, F. Marti, G. Witz, Y. B. Huang, R. Flükiger, S. Clerc, and K. Kwasnitza, present at ICMC'98, May, 10–13, 1998, Enschede, The Netherlands.

  20. K. Kwasnitza, S. Clerc, R. Flükiger, and Y. B. Huang, Physica C 299, 113 (1998).

    Google Scholar 

  21. J. Everett, G. Perkins, A. V. Volkozub, A. D. Caplin, M. Dhallé, A. Polcari, F. Marti, Y. B. Huang, and R. Flükiger, presented at ICMC'98, May, 10–13, 1998, Enschede, The Netherlands.

  22. M. Polak, W. Zhang, J. Parrell, X. Y. Cai, A. Polyankii, E. E. Hellstrom, D. C. Larbalestier, and M. Majoros, Supercond. Sci. Technol. 10, 769 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.B., Dhallé, M., Witz, G. et al. Development of Bi(2223) Multifilamentary Tapes with Low ac Losses. Journal of Superconductivity 11, 495–505 (1998). https://doi.org/10.1023/A:1022662607835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022662607835

Navigation