Skip to main content
Log in

Modeling of Thermodynamic Properties of Amino Acids and Peptides Using Additivity and HKF Theory

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Relative densities, \(\left( {\rho - \rho _o } \right)\), and heat capacity ratios, \([(c_p \rho /c_{p1}^o \rho _o ) - 1],\) of aqueous L-histidine, L-phenylalanine, L-tyrosine, L-tryptophan, and L-2,3-dihydroxyphenylalanine (L-dopa) have been measured at 15, 25, 40, and 55°C and 0.1 MPa. Apparent molar volumes, V 2,Φ, apparent molar heat capacities, CP2,Φ, partial molar volumes at infinite dilution,\(V_2^o\), and partial molar heat capacities at infinite dilution, \(V_{p2}^o\), have been calculated from these measurements and compared to available literature values. The partial molar properties at infinite dilution for these systems have been added to those previously obtained for amino acids and peptides in water and the combined set used as input to a novel additivity analysis. The model we develop is based upon the equations of state of Helgeson, Kirkham, and Flowers (HKF) and has been constructed with additive parameters. The model may be used to predict thermodynamic properties of many aqueous biochemicals over an extended temperature range. Group contributions to the parameters in our model and effective Born coefficients are reported for 24 aqueous amino acid and peptide systems. Our results are compared to data previously published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. H. Brown and R. M. Kelly, Appl. Environ. Microbiol. 55, 2086 (1989).

    Google Scholar 

  2. S. Burggraf, H. W. Jannasch, B. Nicolaus, and K. O. Stetter, Syst. Appl. Microbiol. 13, 24 (1990).

    Google Scholar 

  3. S. Aono, F. O. Bryant, and M. W. W. Adams, J. Bacteriol. 171, 3433 (1989).

    Google Scholar 

  4. J. A. Baross and J. W. Deming, Microbiology of Deep Sea Hydrothermal Vent Environments, Vol. 1, D. M. Karl, ed. (Plenum, New York, 1995).

    Google Scholar 

  5. E. L. Shock, Geochim. Cosmochim. Acta. 56, 3481 (1992).

    Google Scholar 

  6. E. L. Shock and H. C. Helgeson, Geochim. Cosmochim. Acta. 54, 915 (1990).

    Google Scholar 

  7. A. W. Hakin, M. M. Duke, S. A. Klassen, R. M. McKay, and K. E. Preuss, Can. J. Chem. 72, 362 (1994).

    Google Scholar 

  8. M. M. Duke, A. W. Hakin, R. M. McKay, and K. E. Preuss, Can. J. Chem. 72, 1489 (1994).

    Google Scholar 

  9. A. W. Hakin, M. M. Duke, J. L. Marty, and K. E. Preuss, J. Chem. Soc. Faraday Trans. 90, 2027 (1994).

    Google Scholar 

  10. A. W. Hakin, M. M. Duke, L. L. Groft, J. L. Marty, and M. L. Rushfeldt, Can. J. Chem. 73, 725 (1995).

    Google Scholar 

  11. A. W. Hakin, A. K. Copeland, J. L. Liu, R. A. Marriott, and K. E. Preuss, J. Chem. Eng. Data 42, 84 (1997).

    Google Scholar 

  12. M. Iqbal and R. E. Verrall, Can. J. Chem. 67, 727 (1989).

    Google Scholar 

  13. C. Jolicoeur, B. Reidl, D. Desrochers, L. L. Lemelin, R. Zamojska, and O. Enea, J. Solution Chem. 2, 109 (1986).

    Google Scholar 

  14. F. J. Millero, A. Lo Surdo, and C. Shin, J. Phys. Chem. 82, 784 (1978).

    Google Scholar 

  15. J. P. Amend and H. C. Helgeson, J. Chem. Soc. Faraday Trans. 93, 1927 (1997).

    Google Scholar 

  16. H. C. Helgeson and D. H. Kirkham, Am. J. Sci. 276, 97 (1976).

    Google Scholar 

  17. J. P. Amend and H. C. Helgeson, Geochim. Cosmochim. Acta. 61, 11 (1997).

    Google Scholar 

  18. E. L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky, and H. C. Helgeson, J. Chem. Soc. Faraday Trans. 88, 803 (1992).

    Google Scholar 

  19. C. J. Pouchert, The Aldrich Library of Infrared Spectra, 3rd edn., (Aldrich Chemical, Milwaukee, WI, 1981).

    Google Scholar 

  20. C. J. Pouchert and J. R. Campbell, The Aldrich Library of NMR Spectra, Vol. III (Aldrich Chemical, Milwaukee, WI, 1974).

    Google Scholar 

  21. P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  22. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  23. J. E. Desnoyers, C. DeVisser, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  24. D. G. Archer, J. Phys. Chem. Ref. Data 21, 793, (1992).

    Google Scholar 

  25. A. Lo Surdo, E. M. Alzola, and F. J. Millero, J. Chem. Thermodyn. 14, 649 (1982).

    Google Scholar 

  26. F. J. Millero, J. Phys. Chem. 74, 356 (1970).

    Google Scholar 

  27. L. A. Dunn, Trans. Faraday Soc. 64, 2961, (1968).

    Google Scholar 

  28. G. Perron, J.-L. Fortier, and J. E. Desnoyers, J. Chem. Thermodyn. 7, 1177 (1975).

    Google Scholar 

  29. G. Dessauges, N. Miljevic, and W. A. Van Hook, J. Phys. Chem. 84, 2587 (1980).

    Google Scholar 

  30. C.-T. Chen, R. T. Emmett, and F. J. Millero, J. Chem. Eng. Data 22, 201 (1977).

    Google Scholar 

  31. F. Vaslow, J. Phys. Chem. 70, 2286 (1966).

    Google Scholar 

  32. I. O. Olofsson, J. Chem. Thermodyn. 11, 1005 (1979).

    Google Scholar 

  33. P. P. Singh, E. M. Woolley, K. G. McCurdy, and L. G. Hepler, Can. J. Chem. 54, 3315 (1976).

    Google Scholar 

  34. L. M. Connaughton, J. P. Hershey, and F. J. Millero, J. Solution Chem. 15, 989 (1986).

    Google Scholar 

  35. G. S. Kell, J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  36. G. S. Kell, Water—A Comprehensive Treatise, F. Franks, ed., Vol. 1 (Plenum, New York, 1972), p. 363.

    Google Scholar 

  37. M. Kikuchi, M. Sakurai, and K. Nitta, J. Chem. Eng. Data 40, 935 (1995).

    Google Scholar 

  38. D. P. Kharakoz, Biophys. Chem. 34, 115, (1989).

    Google Scholar 

  39. G. N. Rao, V. M. Ch. V. Kumari, K. V. Ramana, and R. S. Rao, Indian J. Chem. 28A, 709 (1989).

    Google Scholar 

  40. N. Okabe, Y. Sagimori, and M. Hokaze, Chem. Pharm. Bull. 39, 2115 (1991).

    Google Scholar 

  41. A. K. Mishra and J. C. Ahluwalia, J. Phys. Chem. 88, 86, (1984).

    Google Scholar 

  42. J. W. Johnson and D. Norton, Am. J. Sci. 291, 541 (1991).

    Google Scholar 

  43. A. W. Hakin, D. C. Daisley, L. Delgado, J. L. Liu, R. A. Marriott, J. L. Marty, and G. Tompkins, J. Chem. Thermodyn., in press.

  44. T. V. Chalikian, A. P. Sarvazyan, T. Funck, and K. J. Breslauer, Biopolymers 34, 541 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marriott, R.A., Hakin, A.W. & Liu, J.L. Modeling of Thermodynamic Properties of Amino Acids and Peptides Using Additivity and HKF Theory. Journal of Solution Chemistry 27, 771–802 (1998). https://doi.org/10.1023/A:1022659102997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022659102997

Navigation