Skip to main content
Log in

Discrete Quantum Scattering Theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate quantum scattering theory in terms of a discrete L 2-basis of eigen differentials. Using projection operators in the Hilbert space, we develop a universal method for constructing finite-dimensional analogues of the basic operators of the scattering theory: S- and T-matrices, resolvent operators, and Möller wave operators as well as the analogues of resolvent identities and the Lippmann–Schwinger equations for the T-matrix. The developed general formalism of the discrete scattering theory results in a very simple calculation scheme for a broad class of interaction operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

REFERENCES

  1. E. J. Heller, Phys. Rev. A, 12, 1222 (1975).

    Google Scholar 

  2. B. Konya, G. Levai, and Z. Papp, Phys. Rev. C, 61, 034302 (2000).

    Google Scholar 

  3. G. F. Filippov and I. P. Okhrimenko, Sov. J. Nucl. Phys., 32, 480 (1980).

    Google Scholar 

  4. Yu. I. Nechaev and Yu. F. Smirnov, Sov. J. Nucl. Phys., 35, 808 (1982).

    Google Scholar 

  5. J. M. Bang, A. I. Mazur, A. M. Shirokov, Yu. F. Smirnov, and S. A. Zaytsev, Ann. Phys., 280, 299 (2000).

    Google Scholar 

  6. S. A. Zaitsev, Yu. F. Smirnov, and A. M. Shirokov, Theor. Math. Phys., 117, 1291 (1998).

    Google Scholar 

  7. H. A. Yamani and M. S. Abdelmonem, J. Phys. B, 30, 1633 (1997).

    Google Scholar 

  8. T. Vertse, P. Curutchet, and R. J. Liotta, Phys. Rev. C, 42, 2605 (1990); T. Vertse, P. Curutchet, R. J. Liotta, J. Bang, and N. Van Giai, Phys. Lett. B, 264, 1 (1991); R. J. Liotta, E. Maglione, N. Sandulescu, and T. Vertse, Phys. Lett. B, 367, 1 (1996).

    Google Scholar 

  9. E. J. Heller, W. P. Reinhardt, and H. A. Yamani, J. Comput. Phys., 13, 536 (1973).

    Google Scholar 

  10. C. T. Corcoran and P. W. Langhoff, J. Math. Phys., 18, 651 (1977).

    Google Scholar 

  11. J. R. Winick and W. P. Reinhardt, Phys. Rev. A, 18, 910 (1978).

    Google Scholar 

  12. I. Cacelli, V. Carravetta, and A. Rizzo, J. Chem. Phys., 98, 8742 (1993).

    Google Scholar 

  13. M. Cizek, J. Horacek, and H.-D. Meyer, Comput. Phys. Comm., 131, 41 (2000).

    Google Scholar 

  14. G. Melnikov,J. Horacek, and H. Nakamura, Comput. Phys. Comm. (to appear).

  15. O. A. Rubtsova and V. I. Kukulin, Phys. Atomic Nuclei, 64, 1799 (2001).

    Google Scholar 

  16. V. I. Kukulin and O. A. Rubtsova, Theor. Math. Phys., 130, 54 (2002).

    Google Scholar 

  17. A. Messiah, Quantum Mechanics, North-Holland, Amsterdam (1961).

    Google Scholar 

  18. R. G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, New York (1966).

    Google Scholar 

  19. S. Sukanawa, Quantum Scattering Theory [in Japanese], Iwanami Shoten, Japan (1977).

    Google Scholar 

  20. D. Shanks, J. Math. Phys., 34, 1 (1955).

    Google Scholar 

  21. P. Wynn, Math. Tables Aids Comput., 10, 91 (1956).

    Google Scholar 

  22. S. P. Merkur'ev and L. D. Faddeev, Quantum Scattering Theory for Several Particle Systems [in Russian], Nauka, Moscow (1985); English transl.: L. D. Faddeev and S. P. Merkuriev, Kluwer, Dordrecht (1993).

    Google Scholar 

  23. H. Feshbach, Ann. Phys., 164, 398 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukulin, V.I., Rubtsova, O.A. Discrete Quantum Scattering Theory. Theoretical and Mathematical Physics 134, 404–426 (2003). https://doi.org/10.1023/A:1022657607306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022657607306

Navigation