Skip to main content
Log in

Prediction of Local and Global Ionization Effects on ICs: The Synergy between Numerical and Physical Simulation

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A review is presented of an integrated approach to hardness assurance, embracing single-event and global pulsed-ionization effects. The strategy essentially combines numerical and physical simulation in order to obtain reliable data on IC radiation response with minimum expenditure of time and money. The way in which calculations and measurements should be combined depends on the type of IC and the radiation conditions. It is shown that the cost of measurement can be reduced by using laboratory radiation simulators and each form of radiation of interest can be simulated with an agent readily available for the tester. Particular coverage is given to simulation with lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gerasimov, V.F., Gontar', V.V., Klimov, S.V., Kritenko,M.I., et al., Simulation Testing of Electronic Equipment for Radiation Hardness: Experience and Prospective Applications, in Radiatsionnaya stoikost' elektronnykh sistem “Stoikost'-2001” (Hardness-2001: Radiation Hardness of Electronic Systems), Moscow: Paims, 2001, issue 4, pp. 1–2.

    Google Scholar 

  2. Chumakov, A.I., Nikiforov, A.Y., Skorobogatov, P.K., et al., A System for the Parametric and Functional Testing of ICs for Radiation Hardness during Design and Manufacture, Prib. Sist. Upravl., 1998, no. 9, pp. 65–67.

  3. Ionizing Radiation Effects in MOS Devices and Circuits, Ma, T.P. and Dressendorfer, P.V., Eds., New York: Wiley, 1989.

    Google Scholar 

  4. Holmes-Siedle, A. and Adams, L., Handbook of Radiation Effects, New York: Oxford Univ. Press, 1993.

    Google Scholar 

  5. Habing, D.H., Use of Laser to Simulate Radiation-Induced Transients in Semiconductors and Circuits, IEEE Trans. Nucl. Sci., 1965, vol. 12, no. 6, pp. 91–100.

    Google Scholar 

  6. Skorobogatov, P.K., Nikiforov, A.Y., Kritenko, M.I., and Demidov, A.A., Improving the Accuracy of Laser Simulation for Global Ionization Effects on ICs, in Radiatsionnaya stoikost' elektronnykh sistem “Stoikost'-98” (Hardness-98: Radiation Hardness of Electronic Systems), Moscow: SPELS-NIIP, 1998, pp. 97–98.

    Google Scholar 

  7. Stapor, W.J., Single Event Effects (SEE) Qualification: Advanced Qualification Techniques, A Practical Guide for Radiation Testing of Electronics, IEEE Nuclear and Space Effects Conf. Short Course, Madison, Wis., 1995, pp. II-1-II–68.

  8. Petersen, E.D., Single-Event Analysis and Prediction, Applying Computer Simulation Tools to Radiation Effects Problems, 1997 IEEE NSREC Short Course, Snowmass, 1997, pp. III-1-III–160.

  9. Messenger, G.C. and Ash, M.S., Single Event Phenomena, New York: Chapman & Hall, 1997.

    Google Scholar 

  10. Buchner, S., McMorrow, D., Melinger, J., and Campbell, A.B., Laboratory Tests for Single-Event Effects, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 2, pp. 678–686.

    Google Scholar 

  11. Chumakov, A.I., Egorov, A.N., Mavritsky, O.K., Nikiforov, A.Y., and Yanenko, A.V., Single Event Latchup Threshold Estimation Based on Laser Dose Rate Test Results, IEEE Trans. Nucl. Sci., 1997, vol. 44, no. 6, pp. 2034–2039.

    Google Scholar 

  12. Johnston, A.H. and Hughlock, B.W., Latchup in CMOS from Single Particles, IEEE Trans. Nucl. Sci., 1990, vol. 37, no. 6, pp. 1886–1893.

    Google Scholar 

  13. Johnston, A.H., The Influence of VLSI Technology Evolution on Radiation-Induced Latchup in Space Systems, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 2, pp. 505–521.

    Google Scholar 

  14. Dodd, P.E., Device Simulation of Charge Collection and Single-Event Upset, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 2, pp. 561–575.

    Google Scholar 

  15. McLean, F.B. and Oldham, T.R., Charge Funneling in Nand P-Type Si Substrates, IEEE Trans. Nucl. Sci., 1982, vol. 29, no. 6, pp. 2018–2023.

    Google Scholar 

  16. Chumakov, A.I., Modeling Single-Event Upsets in LSI Components, Mikroelektronika, 1988, vol. 17, no. 5, pp. 459–464.

    Google Scholar 

  17. Chumakov, A.I., Estimation of the Drift-Collected Charge from a Single-Particle Track, Mikroelektronika, 1991, vol. 20, no. 4, pp. 402–406.

    Google Scholar 

  18. de la Rochette, H., Bruguier, G., Palau, J.-M., Gasiot, J., and Ecoffet, R., Trace par simulation des courbes de section efficace de latchup declenche par ion lourd, Proc. RADECS-95, Arcachon, France, 1995, pp. 359–364.

  19. Fouillat, P., Lapuyade, H., Touboul, A., Dom, J.P., and Gaillard, R., Numerical Modelling of Mechanisms Involved in Latchup Triggering by a Laser Beam, Proc. RADECS-95, Arcachon, France, 1995, pp. 379–386.

  20. Chumakov, A.I., Egorov, A.N., Mavritsky, O.B., Yanenko, A.V., Artamonov, A.S., and Shevchenko, A.Y., Laser Technique of Single Event Latchup Threshold Estimation, Proc. 4th Workshop on Electronics for LHC Experiments, Rome, 1998, pp. 471–475.

  21. Moss, S.C., Lalumondiere, S.D., Scarpulla, J.R., MacWillams, K.P., Crain, W.R., and Koga, R., Correlation of Picosecond Laser-Induced Latchup in CMOS Test Structures, IEEE Trans. Nucl. Sci., 1995, vol. 42, no. 6, pp. 1948–1956.

    Google Scholar 

  22. Pickel, J.C., Single-Event Effects Rate Prediction, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 2, pp. 483–495.

    Google Scholar 

  23. Tylka, A.J., Adams, J.H., Boberg, P.R., Brownstein, B., Dietrich, W.F., Flueckiger, E.O., Petersen, E.L., Shea, M.A., Smart, D.F., and Smith, E.C., CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code, IEEE Trans. Nucl. Sci., 1997, vol. 44, no. 6, pp. 2150-2160, http://www.crsp3.nrl.mil/creme96.

    Google Scholar 

  24. Chumakov, A.I., A Simplified Procedure for Estimating the IC Sensitivity to Single-Event Upsets, Mikroelektronika, 1998, vol. 27, no. 6, pp. 475–479.

    Google Scholar 

  25. Chumakov, A.I., Correlation of Ion-and Proton-Induced Single Event, Proc. 4th Workshop on Electronics for LHC Experiments, Rome, 1998, pp. 476–479.

  26. Calvel, P., Barillot, C., Lamothe, P., Ecoffer, R., Duzellier, S., and Falguere, D., An Empirical Model for Predicting Proton Induced Upset, IEEE Trans. Nucl. Sci., 1996, vol. 44, no. 6, pp. 2827–2832.

    Google Scholar 

  27. Petersen, E.D., Approaches to Proton Single-Event Rate Calculations, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 2, pp. 496–504.

    Google Scholar 

  28. Bendel, W.L. and Petersen, E.L., Proton Upsets in Orbit, IEEE Trans. Nucl. Sci., 1983, vol. 30, no. 6, pp. 4481–4485.

    Google Scholar 

  29. Stapor, W.J., Meyers, L.P., Langworthy, J.B., and Petersen, E.D., Two Parameter Bendel Model Calculations for Predicting Proton Induced Upsets, IEEE Trans. Nucl. Sci., 1990, vol. 37, no. 6, pp. 1966–1973.

    Google Scholar 

  30. Miroshkin, V.V. and Tverskoy, M.G., Some Aspects of Application of Two Parameter SEU Model, IEEE Trans. Nucl. Sci., 1995, vol. 42, no. 6, pp. 1809–1814.

    Google Scholar 

  31. Chumakov, A.I. and Kuznetsov, N.V., Simplified Threshold Estimation of Proton-Induced SEU, Proc. 1997 4th European Conf. on Radiation and Its Effects on Components and Systems, RADECS 97, Cannes, 1997, pp. 553–556.

  32. Poivey, C., Doucin, B., Bruggemann, M., and Harboe-Sorensen, R., Radiation Characterisation of Commercially Available 1 Mbit/4 Mbit SRAMs for Space Application, 1998 IEEE Radiation Effects Data Workshop, 1998, pp. 68–73.

  33. Larin, F., Radiation Effects in Semiconductor Devices, New York: Wiley, 1968.

    Google Scholar 

  34. Wirth, J.L. and Rogers, S.C., The Transient Response of Transistors and Diodes to Ionizing Radiation, IEEE Trans. Nucl. Sci., 1964, vol. 11, no. 5, pp. 24–38.

    Google Scholar 

  35. Gage, D.S., Calculation of Electrical and Radiation Storage Time in Transistors, IEEE Trans. Nucl. Sci., 1965, vol. 12, no. 5, pp. 112–125.

    Google Scholar 

  36. Gaillard, R. and Genre, R., Anomalous Photocurrent in Low-Power Epitaxial Transistors, IEEE Trans. Nucl. Sci., 1972, vol. 19, no. 6, pp. 406–413.

    Google Scholar 

  37. Florian, J.R., Jacobs, R.W., Micheletti, P.E., and King, E.E., Improved Transient Response Modeling in IC's, IEEE Trans. Nucl. Sci., 1984, vol. 31, no. 6, pp. 1402–1405.

    Google Scholar 

  38. Enlow, E.W. and Alexander, D.R., Photocurrent Modeling of Modern Microcircuit PN Junctions, IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1467–1473.

    Google Scholar 

  39. Troutman, R.R., Latch-up in CMOS Technology: The Problem and Its Cure, Boston: Kluwer Academic, 1986.

    Google Scholar 

  40. Fang, R.C-Y. and Moll, J.L., Latchup Model for the Parasitic p-n-p-n Path in Bulk CMOS, IEEE Trans. Electron Devices, 1984, vol. 31, no. 1, pp. 113–120.

    Google Scholar 

  41. Plaag, R.E., Baze, M.P., and Jonston, A.H., A Distributed Model for Radiation-Induced Latchup, IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1563–1567.

    Google Scholar 

  42. Raburn, W.D., Buchner, S.P., Kang, K., Singh, R., and Sayers, S., Comparison of Threshold Transient Upset Levels Induced by Flash X-rays and Pulsed Lasers, IEEE Trans. Nucl. Sci., 1988, vol. 35, no. 6, pp. 1512–1516.

    Google Scholar 

  43. Nikiforov, A.Y. and Poljakov, I.V., Test CMOS/SOS RAM for Transient Radiation Upset Comparative Research and Failure Analysis, IEEE Trans. Nucl. Sci., 1995, vol. 42, no. 6, pp. 2138–2142.

    Google Scholar 

  44. Skorobogatov, P.K., Optimization of Laser-Radiation Parameters in Simulating Global Ionization Effects on Semiconductors and ICs, in Radiatsionnaya stoikost' elektronnykh sistem “Stoikost'-2000” (Hardness-2000: Radiation Hardness of Electronic Systems), Moscow: Paims, 2000, issue 3, pp. 77–78.

    Google Scholar 

  45. Pankove, J.I., Optical Processes in Semiconductors, Englewood Cliffs, NJ: Prentice-Hall, 1971.

    Google Scholar 

  46. Schmid, P.E., Optical Absorption in Heavily Doped Silicon, Phys. Rev. B, 1981, vol. 23, no. 10, pp. 5531–5536.

    Google Scholar 

  47. Nikiforov, A.Y. and Skorobogatov, P.K., Dose Rate Laser Simulation Tests Adequacy: Shadowing and High Intensity Effects Analysis, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 3115–3121.

    Google Scholar 

  48. Johnston, A.H., Charge Generation and Collection in pn Junctions Excited with Pulsed Infrared Lasers, IEEE Trans. Nucl. Sci., 1993, vol. 40, no. 6, pp. 1694–1702.

    Google Scholar 

  49. Syts'ko, Yu.I., Skorobogatov, P.K., Chumakov, A.I., et al., DIODE-2D: A 2D Semiconductor Simulation Software System, in Radiatsionnaya stoikost' elektronnykh sistem “Stoikost'-99” (Hardness-99: Radiation Hardness of Electronic Systems), Moscow: SPELS-NIIP, 1999, pp. 21–22.

    Google Scholar 

  50. Skorobogatov, P.K., Nikiforov, A.Y., and Demidov, A.A., Use of Diffused Laser Irradiation to Improve Dose Rate Simulation Adequacy, Proc. 5th Workshop on Electronics for LHC Experiments, Snowmass, Colo., 1999, pp. 547–550.

  51. Egorov, A.N., Mavritskii, O.B., Skorobogatov, P.K., et al., RADON-5M Specialized Laser Simulator for Pulsed-Radiation Hardness Assurance, in Lazery v nauke, tekhnike, meditsine: Tezisy dokladov VII mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (VII Int. Conf. on Lasers in Science, Technology, and Medicine, Abstracts of Papers), Sergiev Posad, Moscow oblast, Russia, 1996, pp. 104–106.

  52. Nikiforov, A.Y., Skorobogatov, P.K., Artamonov, A.V., Telets, V.A., Figurov, V.S., and Polevich, S.A., Comparative Transient Simulation and Radiation Tests of Multichip Diode Bridge Circuits, Proc. 3rd Workshop on Electronics for LHC Experiments, London, 1997, pp. 512–516.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakov, V.V., Chumakov, A.I., Nikiforov, A.Y. et al. Prediction of Local and Global Ionization Effects on ICs: The Synergy between Numerical and Physical Simulation. Russian Microelectronics 32, 105–118 (2003). https://doi.org/10.1023/A:1022656102956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022656102956

Keywords

Navigation