Skip to main content
Log in

Thermophysical Properties by a Pulse-Heating Reflectometric Technique: Niobium, 1100 to 2700 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Pulse-heating experiments were performed on niobium strips, taking the specimens from room temperature to the melting point is less than one second. The normal spectral emissivity of the strips was measured by integrating sphere reflectometry, and, simultaneously, experimental data (radiance temperature, current, voltage drop) for thermophysical properties were collected with sub-millisecond time resolution. The normal spectral emissivity results were used to compute the true temperature of the niobium strips; the heat capacity, electrical resistivity, and hemispherical total emissivity were evaluated in the temperature range 1100 to 2700 K. The results are compared with literature data obtained in pulse-heating experiments. It is concluded that combined measurements of normal spectral emissivity and of thermophysical properties on strip specimens provide results of the same quality as obtained using tubular specimens with a blackbody. The thermophysical property results on niobium also validate the normal spectral emissivity measurements by integrating sphere reflectometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Righini, G. C. Bussolino, and A. Rosso, in Proceedings of TEMPMEKO'96, P. Marcarino, ed. (Levrotto & Bella, Torino, 1997), pp. 489–492.

    Google Scholar 

  2. F. Righini, J. Spišiak, and G. C. Bussolino, Int. J. Thermophys. 20:1095 (1999).

    Google Scholar 

  3. F. Righini, A. Rosso, and L. Coslovi, in Proc. Seventh Symp. Thermophys. Prop., A. Cezairliyan, ed. (ASME, New York, 1977), pp. 358–368.

    Google Scholar 

  4. F. Righini and A. Rosso, Measurement 1:79 (1983).

    Google Scholar 

  5. F. Righini, G. C. Bussolino, and A. Rosso, in Temperature. Its Measurement and Control in Science and Industry, Vol. 6, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), pp. 763–768.

    Google Scholar 

  6. A. Cezairliyan, High Temp.-High Press. 4:453 (1972).

    Google Scholar 

  7. F. Righini, G. C. Bussolino, A. Rosso, and J. Spišiak, Int. J. Thermophys. 14:485 (1993).

    Google Scholar 

  8. H. Preston-Thomas, Metrologia 27:3 (1990).

    Google Scholar 

  9. IUPAC Commission on Atomic Weights, Pure Appl. Chem. 21:91 (1970).

    Google Scholar 

  10. F. Righini, J. Spišiak, G. C. Bussolino, and F. Scarpa, High Temp.-High Press. 29:473 (1997).

    Google Scholar 

  11. CIPM, BIPM Proc.-Verb. Com. Int. Poids Mesures 49:8, 26 (1981).

    Google Scholar 

  12. CIPM, BIPM Proc.-Verb. Com. Int. Poids Mesures 54:14, 35 (1986).

    Google Scholar 

  13. F. Righini, R. B. Roberts, and A. Rosso, Int. J. Thermophys. 6:681 (1985).

    Google Scholar 

  14. K. D. Maglic, N. Lj. Perovic, G. S. Vukovic, and Lj. P. Zekovic, Int. J. Thermophys. 15:963 (1994).

    Google Scholar 

  15. A. Cezairliyan, J. Res. Natl. Bur. Stand. (U.S.) 75A:565 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Righini, F., Spišiak, J., Bussolino, G.C. et al. Thermophysical Properties by a Pulse-Heating Reflectometric Technique: Niobium, 1100 to 2700 K. International Journal of Thermophysics 20, 1107–1116 (1999). https://doi.org/10.1023/A:1022654804141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022654804141

Navigation