Skip to main content
Log in

Application of the Bjerrum Association Model to Electrolyte Solutions. III. Temperature and Pressure Dependencies of Association Constants

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Bjerrum association model, developed in 1926, is now incorporated in many conductance theories of electrolyte systems to extract Λ0 and K A from experimental data. The Bjerrum concept is simply a convenient way of taking into account short-range electrostatic interactions between ions. The equations of the Bjerrum model can be applied to the prediction of the temperature and pressure dependencies of K A from the value of K A at a reference T and P and from the dielectric properties of the solvent. This feature will be essential when the relaxation effect is taken into account when applying the model to heat capacities and compressibilities. These equations were tested against literature K A values (obtained from treatment of conductance data by equations that incorporate the Bjerrum concept) in aqueous electrolyte solutions at high temperatures and pressures and in some electrolyte systems in acetonitrile, 2-butanone, propylene carbonate, γ-butyrolactone, and propanol. In the absence of specific interactions in solution, the agreement between experimental and predicted K A are generally quite good. Notable exceptions are acids and bases in water, lithium perchlorate in most solvents, and the majority of electrolytes in propylene carbonate, suggesting that specific interactions in these systems may cause the model to fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Bjerrum, Kon. Danske Vidensk. Selskab 7, 9 (1926).

    Google Scholar 

  2. J.-C. Justice, J. Solution Chem. 20, 1017 (1991).

    Article  Google Scholar 

  3. J.-C. Justice, J. Phys. Chem. 100, 1246 (1996).

    Google Scholar 

  4. J.-C. Justice, in Comprehensive Treatise of Electrochemistry, Vol. 5, B. E. Conway, J. O'M. Bockris, and E. Yeager, eds. (Plenum, New York, 1983), Chap. 3.

    Google Scholar 

  5. J. Barthel, R. Wachter, and H.-J. Gores, in Modern Aspects of Electrochemistry, Vol. 13, B. E. Conway and J. O'M. Bockris, eds. (Plenum, New York, 1979).

    Google Scholar 

  6. J.-F. Côté, J. E. Desnoyers, and J.-C. Justice, J. Solution Chem. 25, 113 (1996).

    Google Scholar 

  7. J.-F. Côté, G. Perron, J. E. Desnoyers, G. C. Benson, and B. C.-Y. Lu, J. Solution Chem. 27, 683 (1998).

    Google Scholar 

  8. Y. Marcus, Z. Naturforsch. 38a, 247 (1983).

    Google Scholar 

  9. P. C. Ho, D. A. Palmer, and R. E. Mesmer, J. Solution Chem. 23, 997 (1994).

    Google Scholar 

  10. P. C. Ho, and D. A. Palmer, J. Solution Chem. 24, 753 (1995).

    Google Scholar 

  11. P. C. Ho, and D. A. Palmer, J. Solution Chem. 25, 711 (1996).

    Google Scholar 

  12. D. G. Archer and P. Wang, J. Phys. Chem. Ref. Data 19, 371 (1990).

    Google Scholar 

  13. J. Barthel, R. Buchner, and H.-J. Wittmann, Z. Phys. Chem. [NF] 139, 23 (1984).

    Google Scholar 

  14. H. Graml, Thesis, Universität Regensburg, 1991.

  15. J. Barthel, L. Iberl, J. Rossmaier, H. J. Gores, and B. Kaukal, J. Solution Chem. 19, 321 (1990).

    Google Scholar 

  16. J. Barthel, R. Neuder, M. Poxleitner, J. Seitz-Beywl, and L. Werblan, J. Electroanal. Chem. 344, 249 (1993).

    Google Scholar 

  17. M. Kindler, Thesis, Universität Regensburg, 1985.

  18. L. Reichstädter, E. Fischerová, and O. Fischer, J. Solution Chem. 22, 809 (1993).

    Google Scholar 

  19. J. Barthel, R. Wachter, G. Schmeer, and H. Hilbinger, J. Solution Chem. 15, 531 (1986).

    Google Scholar 

  20. J.-F. Côté, D. Brouillette, J. E. Desnoyers, J.-F. Rouleau, J.-M. St-Arnaud, and G. Perron, J. Solution Chem. 25, 1163 (1996).

    Google Scholar 

  21. J. Barthel, ELDAR Data Bank, Fiz Chemie Berlin, 1990.

  22. G. Perron, L. Couture, D. Lambert, and J. E. Desnoyers, J. Electroanal. Chem. 355, 277 (1993).

    Google Scholar 

  23. S. M. Gubskii, I. N. V'yunnik, and D. A. Nerukh, Russ. J. Phys. Chem. 65, 57 (1991).

    Google Scholar 

  24. S. L. Wellington and D. F. Evans, J. Solution Chem. 12, 815 (1983).

    Google Scholar 

  25. E. Inada, Rev. Phys. Chem. Jpn. 48, 72 (1978).

    Google Scholar 

  26. J. Everaert and A. Persoons, J. Phys. Chem. 86, 546 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Côté, JF., Perron, G. & Desnoyers, J.E. Application of the Bjerrum Association Model to Electrolyte Solutions. III. Temperature and Pressure Dependencies of Association Constants. Journal of Solution Chemistry 27, 707–718 (1998). https://doi.org/10.1023/A:1022653506593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022653506593

Navigation