Skip to main content
Log in

Optimal Control of Nonlinear Fredholm Integral Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Optimal control problems with nonlinear equations usually do not possess optimal solutions, so that their natural (i.e., continuous) extension (relaxation) must be done. The relaxed problem may also serve to derive first-order necessary optimality condition in the form of the Pontryagin maximum principle. This is done here for nonlinear Fredholm integral equations and problems coercive in an L p-space of controls with p<+∞. Results about a continuous extension of the Uryson operator play a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizicovici, S., and Papageorgiou, N. S., Optimal Control and Relaxation of Systems Governed by Volterra Integral Equations, World Congress of Nonlinear Analysts, Edited by V. Lakshmikantham, Walter de Gruyter, Berlin, Germany, pp. 2617–2625, 1996.

    Google Scholar 

  2. Chryssoverghi, I., Contrôle Optimal Relaxé d'Equations Intégrales et aux Derivées Partielles, Doctoral Thesis, EPF, Lausanne, Switzerland, 1976.

    Google Scholar 

  3. Warga, J., Optimal Control of Differential and Functional Equations, Academic Press, New York, New York, 1972.

    Google Scholar 

  4. RoubiČek, T., Relaxation in Optimization Theory and Variational Calculus, Walter de Gruyter, Berlin, Germany, 1997.

    Google Scholar 

  5. Angell, T. S., On the Optimal Control of Systems Governed by Nonlinear Volterra Equations, Journal of Optimization Theory and Applications, Vol. 19, pp. 29–45, 1976.

    Google Scholar 

  6. Bakke, V. L., A Maximum Principle for an Optimal Control Problem with Integral Constraints, Journal of Optimization Theory and Applications, Vol. 13, pp. 32–55, 1974.

    Google Scholar 

  7. Carlson, D. A., An Elementary Proof of the Maximum Principle of Optimal Control Problems Governed by a Volterra Integral Equation, Journal of Optimization Theory and Applications, Vol. 54, pp. 43–61, 1987.

    Google Scholar 

  8. Corduneanu, C., Integral Equations and Applications, Cambridge University Press, Cambridge, England, 1991.

    Google Scholar 

  9. Gabasov, R., and Kirillova, F. M., Principle of Maximum in the Theory of Optimal Control, Nauka i Technika, Minsk, Belarus, 1974 (in Russian).

    Google Scholar 

  10. Schmidt, W. H., Durch Integralgleichungen beschriebene optimale Prozesse mit Nebenbedingungen in Banachräumen—notwendige Optimalitätsbedingungen, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 62, pp. 65–75, 1982.

    Google Scholar 

  11. Schmidt, W. H., Volterra Integral Processes with State Constraints, System Analysis Modelling and Simulation, Vol. 9, pp. 213–224, 1992.

    Google Scholar 

  12. Vinokurov, V. R., Optimal Control of Processes Described by Integral Equations, Parts 1–3, SIAM Journal on Control, Vol. 7, pp. 324–355, 1969.

    Google Scholar 

  13. Schmidt, W. H., Notwendige Optimalitätsbedingungen für Prozesse mit Zeitvariablen Integralgleichungen in Banach-Räumen, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 60, pp. 595–608, 1980.

    Google Scholar 

  14. Schmidt, W. H., Maximum Principles for Processes Governed by Integral Equations in Banach Spaces as Sufficient Optimality Conditions, Beiträge zur Analysis, Vol. 17, pp. 85–93, 1981.

    Google Scholar 

  15. Von Wolfersdorf, L., Optimal Control of a Class of Processes Described by General Integral Equations of Hammerstein Type, Mathematische Nachrichten, Vol. 71, pp. 115–141, 1976.

    Google Scholar 

  16. Bittner, L., Optimal Control of Processes Governed by Abstract Functional, Integral, and Hyperbolic Differential Equations, Mathematische Operationsforschung und Statistik, Vol. 6, pp. 107–134, 1975.

    Google Scholar 

  17. KruŽÍk, M., and RoubÍČek, T., Explicit Characterization of L p -Young Measures, Journal on Mathematical Analysis and Applications, Vol. 198, pp. 830–843, 1996.

    Google Scholar 

  18. Krasnoselski EquationSource % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrpu0dXde9LqFHe9Lq% pepeea0xd9q8as0-LqLs-Jirpepeea0-as0Fb9pgea0lrP0xe9Fve9% Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca% qGjbaaleqabaGaeyikIOnaaaaa!3BCC! , M. A., ZabreEquationSource % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrpu0dXde9LqFHe9Lq% pepeea0xd9q8as0-LqLs-Jirpepeea0-as0Fb9pgea0lrP0xe9Fve9% Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca% qGjbaaleqabaGaeyikIOnaaaaa!3BCC! ko, P. P., Pustylnik, E. I., and Sobolevski EquationSource % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrpu0dXde9LqFHe9Lq% pepeea0xd9q8as0-LqLs-Jirpepeea0-as0Fb9pgea0lrP0xe9Fve9% Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca% qGjbaaleqabaGaeyikIOnaaaaa!3BCC! , P. E., Integral Operators in Spaces of Summable Functions, Nauka, Moscow, Russia, 1966 (in Russian).

  19. Young, L. C., Generalized Curves and the Existence of an Attained Absolute Minimum in the Calculus of Variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe 3, Vol. 30, pp. 212–234, 1937.

    Google Scholar 

  20. Casas, E., Boundary Control of Semilinear Elliptic Equations with Pointwise State Contraits, SIAM Journal on Control and Optimization, Vol. 31, pp. 993–1006, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roubíček, T. Optimal Control of Nonlinear Fredholm Integral Equations. Journal of Optimization Theory and Applications 97, 707–729 (1998). https://doi.org/10.1023/A:1022650427993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022650427993

Navigation