Skip to main content
Log in

Mechanism of copper electrodeposition by pulse current and its relation to current efficiency

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effects of pulse periods and duty cycles on the current efficiency of acid copper plating in a wide range of pulse periods from 200 to 0.02 ms were studied. It was found the current efficiency decreased with shortening pulses in the millisecond range but increased with shortening pulses in the microsecond range. A mathematical model based on the concept of equivalent circuit was employed to simulate the potential responses. Shortening the pulse period was found to change the rate-determining step from charge transfer and surface diffusion to the first step charge transfer. In the millisecond range, the current efficiency decreases with shortening pulse period due to the disproportionation of cuprous ions and the dissolution of copper adatom. However, in the microsecond range, the current efficiency was found to increase with decreasing pulse period because the adatoms are directly incorporated into steps and kink sites, and the disproportionation of cuprous ions or the dissolution of copper adatoms has less chance to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Quemper, E.D. Gergam, N.F. Rodriquez, J.P. Gilles, J.P. Grandchamp and A. Bosseboeuf, J. Micromech. Microeng. 10 (2000) 116.

    Google Scholar 

  2. N.S. Qu, K.C. Chan and D. Zhu, Surf. Coat. Technol. 91 (1997)220.

    Google Scholar 

  3. J.J. Kelly, P.E. Bradley and D. Landolt, J. Electrochem. Soc. 147 (2000) 2975.

    Google Scholar 

  4. E.T. Taylor, J.J Sun and M.E. Inman, Plat. Surf. Finish. 87 (2000)68.

    Google Scholar 

  5. C. Lingk and M.E. Gross, J. Appl. Phys. 84 (1998) 5547.

    Google Scholar 

  6. H.Y. Cheh, J. Electrochem. Soc. 118 (1971) 1132.

    Google Scholar 

  7. K. Viswanathan and H.Y. Cheh, J. Electrochem. Soc. 126 (1979)398.

    Google Scholar 

  8. D-T. Chin, J. Electrochem. Soc. 135 (1983) 1657.

    Google Scholar 

  9. A.C. West, C.C. Cheng and B.C. Baker, J. Electrochem. Soc. 145 (1998) 3070.

    Google Scholar 

  10. C.C. Wan, H.Y. Cheh and H.B. Linford, Plat. Surf. Finish. 63 (1977) 66.

    Google Scholar 

  11. C.C. Wan, H.Y. Cheh and H.B. Linford, J. Appl. Electrochem. 9 (1979) 29.

    Google Scholar 

  12. C.J. Chen and C.C. Wan, J. Electrochem. Soc. 136 (1989) 2850.

    Google Scholar 

  13. T.A. Eckler, B.A. Manty and P.L. Mcdaniel, Plat. Surf. Finish. 66 (1980) 60.

    Google Scholar 

  14. S. Yoshimura, S. Chida and E. Sato, Met. Finish. 84 (1986) 66.

    Google Scholar 

  15. K. Hosokawa, H. Angerer, J.Cl. Puippe and N. Ibl, Plat. Surf.Finish. 66 (1980) 52.

    Google Scholar 

  16. W.S. Miu and Y.S. Fung, Plat. Surf. Finish. 73 (1986) 66.

    Google Scholar 

  17. J. Cl. Puippe and N. Ibl, J. Appl. Electrochem. 10 (1980) 775.

    Google Scholar 

  18. W.C. Tsai, C.C. Wan and Y.Y. Wang, J. Electrochem. Soc. 149 (2002) C229.

    Google Scholar 

  19. E. Mattsson and J.O'M. Bockris, Trans. Farad. Soc. 55 (1959) 1586.

    Google Scholar 

  20. J.O'M. Bockris and H. Kita, J. Electrochem. Soc. 109 (1962) 928.

    Google Scholar 

  21. O.R. Brown and H.R. Thirsk, Electrochimi. Acta 10 (1965) 383.

    Google Scholar 

  22. G.W. Tindall and S. Bruckenstein, Anal. Chem. 40 (1968) 1051.

    Google Scholar 

  23. W.J. Lorenz, H.D. Hermann, N. Wu¨ thrich and F. Hilbert, J.Electrochem. Soc. 121 (1974) 1167.

    Google Scholar 

  24. J.R. White, J. Appl. Electrochem. 17 (1987) 977.

    Google Scholar 

  25. E. Gileadi and V. Tsionsky, J. Electrochem. Soc. 147 (2000) 567.

    Google Scholar 

  26. J.D. Reid and A.P. David, J. Electrochem. Soc. 134 (1987) 1389.

    Google Scholar 

  27. M. Paunovic and M. Schlesinger, ‘Fundamentals ofElectroche mical Deposition’ (John Wiley & Sons, New York, 1998), p. 103.

    Google Scholar 

  28. J.J. Kelly and A.C. West, J. Electrochem. Soc. 145 (1998) 3477.

    Google Scholar 

  29. J.O'M. Bockris and B.E. Conway, J. Chem. Phys. 28 (1958) 707.

    Google Scholar 

  30. N. Tantavichet and M.D. Pritzker, J. Electrochem. Soc. 149 (2002) C289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-C. Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, WC., Wan, CC. & Wang, YY. Mechanism of copper electrodeposition by pulse current and its relation to current efficiency. Journal of Applied Electrochemistry 32, 1371–1378 (2002). https://doi.org/10.1023/A:1022649314480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022649314480

Navigation