Skip to main content

Advertisement

Log in

Establishment of red fluorescent protein-tagged HeLa tumor metastasis models: Determination of DsRed2 insertion effects and comparison of metastatic patterns after subcutaneous, intraperitoneal, or intravenous injection

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis is the leading cause of death in patients with cervical cancer. In this report, we establish novel fluorescent HeLa tumor metastasis models to determine whether HeLa transfected with the enhanced red fluorescent protein (DsRed2) gene in vitro and xenotransplanted through subcutaneous, intraperitoneal, or intravenous route into SCID mice would permit the detection of tumor micro-metastasis in vivo. Our results showed that DsRed2 insertions did not interfere the tumorigenic properties of HeLa cells. We also demonstrated that DsRed2-transduced HeLa cells maintained stable high-level DsRed2 expressions during their growth in vivo. DsRed2 fluorescence clearly demarcated the primary seeding place and readily allowed for the visualization of distant micro-metastasis and local invasion at the single-cell level. Lung metastasis, the major cause of cervical carcinoma related death, was found in all three models. However, intravenous injections of the HeLa-DsRed2 cells established tumor foci in the lung, while subcutaneous and intraperitoneal injections only established lung metastasis at single-cell levels. The DsRed2 tagged HeLa cancer model allowed detection and investigation of physiologically relevant patterns of cancer invasion and metastasis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenlee RT, Hill-Harmon MB, Murray T et al. Cancer statistics, 2001. CA Cancer J Clin 2001; 51: 15–36.

    Article  PubMed  CAS  Google Scholar 

  2. Schoell WM, Janicek MF, Mirhashemi R. Epidemiology and biology of cervical cancer. Semin Surg Oncol 1999; 16: 203–11.

    Article  PubMed  CAS  Google Scholar 

  3. Cormio G, Pellegrino A, Landoni F et al. Brain metastases from cervical carcinoma. Tumori 1996; 82: 394–6.

    PubMed  CAS  Google Scholar 

  4. Ikeda S, Yamada T, Katsumata N et al. Cerebral metastasis in patients with uterine cervical cancer. Jpn J Clin Oncol 1998; 28: 27–9.

    Article  PubMed  CAS  Google Scholar 

  5. Imachi M, Tsukamoto N, Matsuyama T, et al. Pulmonary metastasis from carcinoma of the uterine cervix. Gynecol Oncol 1989; 33: 189–92.

    Article  PubMed  CAS  Google Scholar 

  6. Kashimura_ M, Sugihara K, Toki N et al. The significance of peritoneal cytology in uterine cervix and endometrial cancer. Gynecol Oncol 1997; 67: 285–90.

    Article  PubMed  CAS  Google Scholar 

  7. Kim GE, Lee SW, Suh CO et al. Hepatic metastases from carcinoma of the uterine cervix. Gynecol Oncol 1998; 70: 56–60.

    Article  PubMed  CAS  Google Scholar 

  8. Shin MS, Shingleton HM, Partridge EE et al. Squamous cell carcinoma of the uterine cervix. Patterns of thoracic metastases. Invest Radiol 1995; 30: 724–9.

    PubMed  CAS  Google Scholar 

  9. Shiromizu K, Kasamatsu T, Takahashi M et al. A clinicopathological study of postoperative pulmonary metastasis of uterine cervical carcinomas. J Obstet Gynaecol Res 1999; 25: 245–9.

    Article  PubMed  CAS  Google Scholar 

  10. Tellis CJ, Beechler CR. Pulmonary metastasis of carcinoma of the cervix: a retrospective study. Cancer 1982; 49: 1705–9.

    Article  PubMed  CAS  Google Scholar 

  11. Wu HS, Yen MS, Lai CR et al. Ovarian metastasis from cervical carcinoma. Int J Gynaecol Obstet 1997; 57: 173–8.

    Article  PubMed  CAS  Google Scholar 

  12. Edinger M, Sweeney TJ, Tucker AA et al. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1999; 1: 303–10.

    Article  PubMed  CAS  Google Scholar 

  13. Sweeney TJ,_ Mailander V, Tucker AA et al. Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 1999; 96: 12044–9.

    Article  PubMed  CAS  Google Scholar 

  14. Tewari KS, Taylor JA, Liao SY et al. Development and assessment of a general theory of cervical carcinogenesis utilizing a severe combined immunodeficiency murine-human xenograft model. Gynecol Oncol 2000; 77: 137–48.

    Article  PubMed  CAS  Google Scholar 

  15. Chalfie M. Green fluorescent protein. Photochem Photobiol 1995; 62: 651–6.

    PubMed  CAS  Google Scholar 

  16. Chalfie M, Tu Y, Euskirchen G et al. Green fluorescent protein as a marker for gene expression. Science 1994; 263: 802–5.

    PubMed  CAS  Google Scholar 

  17. Chishima T, Miyagi Y, Wang X et al. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 1997; 57: 2042–7.

    PubMed  CAS  Google Scholar 

  18. Hoffman RM. Orthotopic transplant mouse models with green fluorescent protein-expressing cancer cells to visualize metastasis and angiogenesis. Cancer Metastasis Rev 1998; 17: 271–7.

    Article  PubMed  Google Scholar 

  19. Paris S, Chauzy C, Martin-Vandelet N et al. A model of spontaneous lung metastases visualised in fresh host tissue by green fluorescent protein expression. Clin Exp Metastasis 1999; 17: 817–22.

    Article  PubMed  CAS  Google Scholar 

  20. Yang M, Baranov E, Jiang P et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 2000; 97: 1206–11.

    Article  PubMed  CAS  Google Scholar 

  21. Matz MV, Fradkov AF, Labas YA et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999; 17: 969–73.

    Article  PubMed  CAS  Google Scholar 

  22. Baird GS, Zacharias DA, Tsien RY. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 2000; 97: 11984–9.

    Article  PubMed  CAS  Google Scholar 

  23. Gross LA, Baird GS, Hoffman RC et al. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 2000; 97: 11990–5.

    Article  PubMed  CAS  Google Scholar 

  24. Yang M, Baranov E, Wang JW et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 2002; 99: 3824–9.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffman RM. Green fluorescent protein imaging of tumor cells in mice. Lab Anim. 2002; 31: 34–41.

    Google Scholar 

  26. Hsiao M, Tse V, Carmel J et al. Intracavitary liposome-mediated p53 gene transfer into glioblastoma with endogenous wild-type p53 in vivo results in tumor suppression and long-term survival. Biochem Biophys Res Commun 1997; 233: 359–64.

    Article  PubMed  CAS  Google Scholar 

  27. Tearney GJ, Brezinski ME, Bouma BE et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 1997; 276: 2037–9.

    Article  PubMed  CAS  Google Scholar 

  28. Taubes G. Play of light opens a new window into the body. Science 1997; 276: 1991–3.

    Article  PubMed  CAS  Google Scholar 

  29. Baum RP, Brummendorf TH. Radioimmunolocalization of primary and metastatic breast cancer. Q J Nucl Med 1998; 42: 33–42.

    PubMed  CAS  Google Scholar 

  30. Dessureault S, Koven I, Reilly RM et al. Pre-operative assessment of axillary lymph node status in patients with breast adenocarcinoma using intravenous 99mtechnetium mAb-170H.82 (Tru-Scint AD). Breast Cancer Res Treat 1997; 45: 29–37.

    Article  PubMed  CAS  Google Scholar 

  31. Neri D, Carnemolla B, Nissim A et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fi-bronectin isoform. Nat Biotechnol 1997; 15: 1271–5.

    Article  PubMed  CAS  Google Scholar 

  32. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997; 15: 542–6.

    Article  PubMed  CAS  Google Scholar 

  33. Teates CD, Parekh JS. New radiopharmaceuticals and new applications in medicine. Curr Probl Diagn Radiol 1993; 22: 229–66.

    PubMed  CAS  Google Scholar 

  34. Weissleder R, Tung CH, Mahmood U et al. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999; 17: 375–8.

    Article  PubMed  CAS  Google Scholar 

  35. Heikal AA, Hess ST, Baird GS et al. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc Natl Acad Sci USA 2000; 97: 11996–2001.

    Article  PubMed  CAS  Google Scholar 

  36. Ormo M, Cubitt AB, Kallio K et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996; 273: 1392–5.

    PubMed  CAS  Google Scholar 

  37. Wachter RM, Elsliger MA, Kallio K et al. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 1998; 6: 1267–77.

    Article  PubMed  CAS  Google Scholar 

  38. Hawley TS, Telford WG, Ramezani A et al. Four-color flow cytometric detection of retrovirally expressed red, yellow, green, and cyan fluorescent proteins. Biotechniques 2001; 30: 1028–34.

    PubMed  CAS  Google Scholar 

  39. Jakobs S, Subramaniam V, Schonle A et al. EFGP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett 2000; 479: 131–5.

    Article  PubMed  CAS  Google Scholar 

  40. Furuta T, Tomioka R, Taki K et al. In vivo transduction of central neurons using recombinant Sindbis virus. Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 2001; 49: 1497–508.

    PubMed  CAS  Google Scholar 

  41. Bevis BJ, Glick BS. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 2002; 20: 83–7.

    Article  PubMed  CAS  Google Scholar 

  42. Torrance CJ, Agrawal V, Vogelstein B et al. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol 2001; 19: 940–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hsiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, JY., Chen, HC., Chu, R.YY. et al. Establishment of red fluorescent protein-tagged HeLa tumor metastasis models: Determination of DsRed2 insertion effects and comparison of metastatic patterns after subcutaneous, intraperitoneal, or intravenous injection. Clin Exp Metastasis 20, 121–133 (2003). https://doi.org/10.1023/A:1022645116030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022645116030

Navigation