Abstract
The formation constants for copper complexes with the mellitic acid series, a series of aromatic carboxylic acids, were determined from potentiometric copper titrations. Formation constants were determined for copper complexation with hemimellitic acid, trimellitic acid, trimesic acid, pyromellitic acid, and mellitic acid at five pH values (3.00, 4.00, 5.00, 5.75, 6.75) for each organic acid. The ionic strength of the solutions was 0.1M and the temperature was 25°C for all titrations. Free copper-ion activity was monitored with an ion-specific electrode. Relevant complexation reactions and corresponding stability constants for description of the experimental data were determined by application of the nonlinear parameter optimization program FITEQL to the experimental data. Testing various possible complexes revealed that the simple 1:1 complexes of CuL and CuHL (where L represents the fully deprotonated organic ligand) could describe all of the data. The logarithms of the complex formation constants for the CuL species ranged from 2.67 for trimesic acid to 6.23 for mellitic acid, and for the CuHL species from 2.47 for trimellitic acid to 5.03 for mellitic acid. The logarithms of the extracted metal–organic ligand complex formation constants were found to correlate well with the logarithms of organic acid dissociation constants.
Similar content being viewed by others
REFERENCES
A. E. Martell and R. M. Smith, Critical Stability Constants, Vol. 3. Other Organic Ligands (Plenum, New York, 1977).
U.S. Department of Commerce, Critical Stability Constants of Metal Complexes, NIST Standard Reference Database 46 (National Institute of Standards and Technology, Gaithersburg, MD, 1994).
E. Nieboer and W. A. E. McBryde, Can. J. Chem. 48, 2549 (1970).
R. M. Smith, A. E. Martell, and R. J. Motekaitis, Inorg. Chim. Acta 99, 207 (1985).
H. Irving and H. Rossotti, Acta Chem. Scand. 10, 72 (1956).
E. M. Thurman, Organic Geochemistry of Natural Waters (Kluwer Academic Publishers, 1985).
E. M. Perdue, in Humic Substances in Soil, Sediment, and Water, Vol. 1, Chap. 20, G. R. Aiken, D. M. McKnight, D. M. Wershaw, and R. L. McCarthy, eds. (Wiley, New York, 1985).
M. Taga, S. Tanaka, and M. Fukushima, Anal. Chim. Acta. 244, 281 (1991).
M. F. Benedetti, C. J. Milne, D. G. Kinniburgh, W. H. Van Riemsdijk, and L. K. Koopal, Environ. Sci. Technol. 29, 2 (1995).
E. M. Perdue and C. R. Lytle, Environ. Sci. Technol. 17, 11 (1983).
J. H. Ephraim, Sci. Total Environ. 108, 261 (1991).
J. Buffle, Complexation Reactions in Aquatic Systems (Ellis Horwood, Chichester, 1988).
F. M. M. Morel and J. G. Hering, in Aquatic Chemical Kinetics, W. Stumm, ed. (Wiley, New York, 1990).
R. F. Breault, J. A. Colman, G. R. Aiken, and D. McKnight, Environ. Sci. Technol. 30, 12 (1996).
R. W. Winner, Aquatic Toxicol. 5, 267 (1984).
R. C. Playle and D. G. Dixon, Can. J. Fish. Aquat. Sci. 50, 2678 (1993).
D. B. Buchwalter, G. Linder, and L. R. Curtis, Environ. Toxicol. Chem. 15, 4 (1996).
N. E. Good, G. D. Winget, W. Winter, T. N. Connolly, S. Izawa, and R. M. M. Singh, Biochemistry 5, 267 (1966).
F. M. M. Morel and J. G. Hering, Principles and Applications of Aquatic Chemistry (Wiley, New York, 1993).
C. F. Baes, Jr. and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976).
A. L. Herbelin and J. C. Westall, FITEQL: A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 3.1, Report 94-01 (Oregon State University, Department of Chemistry, Corvallis, OR, 1994).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Giammar, D.E., Dzombak, D.A. Copper Complexation with the Mellitic Acid Series. Journal of Solution Chemistry 27, 89–105 (1998). https://doi.org/10.1023/A:1022644713359
Issue Date:
DOI: https://doi.org/10.1023/A:1022644713359