Skip to main content
Log in

Rates of Dissociative Ionic Reactions in Aqueous Mixtures Correlated with Opposing Gibbs Energies of Transfer of Single Ions: Solvolysis of Chloropentacyanocobaltate(III) Anions in Water + Ethanol and Water + Urea

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the solvolysis of Co(CN)5Cl3− have been investigated in water with an added structure former, ethanol, and with added urea, which has only a weak effect on the solvent structure. As this solvolysis involves a rate-determining dissociative step corresponding closely to a 100%; separation, Co3+ ⋯ Cl-, in the transition state, a Gibbs energy cycle relating Gibbs energies of activation in water and in the mixtures to Gibbs energies of transfer of individual ionic species between water and the mixtures, ΔG ot (i), can be applied. The acceleration of the reaction found with both these cosolvents results from the compensation of the retarding positive ΔG ot (Cl- by the negative term [G ot [Co(CN) 2-5 ]-ΔG ot [Co(CN)5Cl3- arising from ΔG ot [Co(CN)5Cl3-]> ΔG ot [Co(CN) 2-5 ]. Moreover, only a small tendency to extrema in the enthalpies and entropies of activation is found with both these cosolvents, as was also found with added methanol or ethane-1,2-diol, but unlike the extrema found when hydrophobic alcohols are added to water. With the latter, much greater negative values for ΔG ot [Co(CN) 2-5 ]-Δ ot [Co(CN)5Cl3-] are found. When ΔG G ot [Co(CN) 2-5 ]-ΔG G ot [CO(CN)5Cl3-] becomes low enough not to compensate for the positive ΔG ot (Cl-), as with added hydrophilic glucose, the reaction is retarded. Compensating contributions of the various ΔG ot (i) involved in the Gibbs energy cycle with added methanol or ethane-1, 2-diol allow log (rate constant) to vary linearly with the reciprocal of the relative permittivity of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. F. Wells, J. Chem. Soc. Faraday Trans. I 73, 1851 (1977).

    Google Scholar 

  2. K. J. Laidler, Chemical Kinetics, 2nd edn., (McGraw-Hill, New York, 1965), chap. 5.

    Google Scholar 

  3. E. S. Amis, Solvent Effects on Reaction Rates and Mechanisms (Academic Press, New York, 1966), chap. 1.

    Google Scholar 

  4. K. H. M. Halawani and C. F. Wells, J. Chem. Soc. Faraday Trans. 86, 1791 (1990).

    Google Scholar 

  5. M. Alfenaar and C. L. De Ligny, Rec. Trav. Chim. 86, 929 (1967).

    Google Scholar 

  6. R. G. Bates, Hydrogen-Bonded Solvent Systems J. (Taylor and Francis, London, 1968) p. 48.

    Google Scholar 

  7. C. F. Wells, Adv. Chem. Ser. 177, 53 (1979).

    Google Scholar 

  8. C. F. Wells, Aust. J. Chem. 36, 1739 (1983).

    Google Scholar 

  9. I. M. Sidahmed and C. F. Wells, J. Chem. Soc. Dalton Trans. p. 2034 (1981).

  10. G. M. A. El-Subruiti, I. M. Sidahmed, and C. F. Wells, J. Solution Chem. 20, 403 (1991).

    Google Scholar 

  11. K. H. Halawani and C. F. Wells, Transition Metal Chem. 18, 149 (1993).

    Google Scholar 

  12. K. H. Halawani and C. F. Wells, Intern. J. Chem. Kin. 27, 89 (1995).

    Google Scholar 

  13. K. H. Halawani and C. F. Wells, J. Chem. Soc. Faraday Trans., 89, 3565 (1993).

    Google Scholar 

  14. C. F. Wells, Thermochim. Acta 185, 183 (1991).

    Google Scholar 

  15. G. M. El-Subruiti, I. M. Sidahmed, and C. F. Wells, Intern. J. Chem. Kin. 24, 563 (1992).

    Google Scholar 

  16. G. Wada and S. Umeda, Bull. Chem. Soc. Jpn. 35, 646 (1962).

    Google Scholar 

  17. D. A. Palmer and H. Kelm, Z. Anorg. Allg. Chem. 450, 50 (1979).

    Google Scholar 

  18. R. F. Lama and B. C.-Y. Lu, J. Chem. Eng. Data 10, 216 (1965).

    Google Scholar 

  19. J. H. Andreae, P. D. Edmonds, and J. F. McKellar, Acoustica 15, 74 (1965).

    Google Scholar 

  20. A. E. Dunstan, Z. Phys.Chem. 49, 590 (1904).

    Google Scholar 

  21. K. Nakanishi, Bull. Chem. Soc. Jpn. 33, 793 (1960).

    Google Scholar 

  22. K. Arakawa and N. Takenaka, Bull. Chem. Soc. Jpn. 40, 2739 (1967).

    Google Scholar 

  23. G. G. Hammes and P. R. Schimmel, J. Am. Chem. Soc. 89, 442 (1967).

    Google Scholar 

  24. D. V. Beauregard and R. E. Barrett, J. Chem. Phys. 49, 5241 (1968).

    Google Scholar 

  25. J. A. Rupley, J. Phys. Chem., 68, 2002 (1964).

    Google Scholar 

  26. R. H. Stokes, Aust. J. Chem. 20, 2087 (1967).

    Google Scholar 

  27. H. S. Frank and F. Franks, J. Chem. Phys. 48, 4746 (1968).

    Google Scholar 

  28. J. L. Finney, A. K. Soper, and J. Turner, Physica BI56/I57, 151 (1989).

    Google Scholar 

  29. J. Turner, J. L. Finney and, A, K, Soper, Z. Naturforschung, A46, 73 (1991).

    Google Scholar 

  30. J. L. Finney and A. K. Soper, Chem. Soc. Rev. 23, 1 (1994).

    Google Scholar 

  31. G. A. El-Subruiti, K. H. Halawani, I. M. Sidahmed, and C. F. Wells, Transition Metal Chem. 18, 323 (1993).

    Google Scholar 

  32. G. Åkerlöf, J. Am. Chem. Soc. 54, 4125 (1932).

    Google Scholar 

  33. J. Wyman, J. Am. Chem. Soc. 55, 4116 (1933).

    Google Scholar 

  34. G. M. A. El-Subruiti, I. M. Sidahmed, and C. F. Wells, J. Solution Chem., 21, 93 (1992).

    Google Scholar 

  35. K. H. Halawani and C. F. Wells, Transition Metal Chem. 17, 369 (1992).

    Google Scholar 

  36. K. H. Halawani and C. F. Wells, Intern. J. Chem. Kin., 24, 1043 (1992).

    Google Scholar 

  37. K. H. Halawani and C. F. Wells, J. Solution Chem. 23, 1089 (1994).

    Google Scholar 

  38. A. Ray and G. Némethy, J. Chem. Eng. Data 18, 309 (1973).

    Google Scholar 

  39. K. H. Halawani and C. F. Wells, Thermochim. Acta 191, 121 (1991).

    Google Scholar 

  40. Y. P. Handa and G. C. Benson, J. Solution Chem. 10, 291 (1981).

    Google Scholar 

  41. K. K. Kundu and A. K. Das, J. Solution Chem. 8, 259 (1979).

    Google Scholar 

  42. M. J. Blandamer, B. Briggs, J. Burgess, J. Elvidge, P. Guardado, A. W. Hakin, S. Radulovic, and C. D. Hubbard, J. Chem. Soc. Faraday Trans. I, 80, 2445 (1984).

    Google Scholar 

  43. C. F. Wells, Thermochim. Acta 200, 443 (1992).

    Google Scholar 

  44. C. F. Wells, J. Chem. Soc. Faraday Trans. 93, 273 (1997).

    Google Scholar 

  45. C. F. Wells, J. Chem. Soc. Faraday Trans. I, 80, 2445 (1984).

    Google Scholar 

  46. G. S. Groves and C. F. Wells, J. Chem. Soc. Faraday Trans. I, 81, 3091 (1985).

    Google Scholar 

  47. M. C. Ball and A. H. Norbury, Physical Data for Inorganic Chemists. (Longman, London, 1974) (a) p.136; (b) p. 146.

    Google Scholar 

  48. G. Wada and S. Umeda, Bull. Chem. Soc. Jpn. 35, 1797 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halawani, K.H., Wells, C.F. Rates of Dissociative Ionic Reactions in Aqueous Mixtures Correlated with Opposing Gibbs Energies of Transfer of Single Ions: Solvolysis of Chloropentacyanocobaltate(III) Anions in Water + Ethanol and Water + Urea. Journal of Solution Chemistry 27, 273–284 (1998). https://doi.org/10.1023/A:1022644419971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022644419971

Navigation