Skip to main content
Log in

Rare-Earths as Probes of High-Temperature Superconductivity

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Using only two principles: (i) high-temperature superconductivity requires hypercharged oxygen, and (ii) the superconducting condensates are located in those parts of the crystal structures where they are unaffected by magnetic pair breaking, we are able to explain why certain rare-earth ions R are compatible with superconductivity and others are not, in the compounds RBa2Cu3O7, RBa2Cu4O8, RBa2Cu2NbO8, R2 − z Ce z CuO4, and R2 − z Ce z Sr2Cu2NbO10. Various defects are proposed as having central roles in the superconductivity or the suppression of superconductivity in these compounds. Many experiments for testing this physical picture are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. A. Blackstead and J. D. Dow, Phys. Rev. B 51, 11830 (1995).

    Google Scholar 

  2. H. A. Blackstead, J. D. Dow, A. K. Heilman, and D. B. Pulling, Solid State Commun. 103, 581 (1997).

    Google Scholar 

  3. H. A. Blackstead, J. D. Dow, I. Felner, H.-h. Luo, and W. B. Yelon, “Evidence of granular superconductivity in Pr2−z CezSr2Cu2NbO10,” Int. J. Mod. Phys. B, in press. In addition, H. Y. Hwang, S.-W. Cheong, A. S. Cooper, L. W. Rupp, Jr., B. Batlogg, G. H. Kwei, and Z. Tan, Physica 192, 362 (1992), have shown that Sr is easily soluble on Pr sites in the sister compound Pr2−z CezCuO4.

  4. H. A. Blackstead, D. B. Chrisey, J. D. Dow, J. S. Horwitz, A. E. Klunzinger, and D. B. Pulling, Phys. Lett. A 207, 109 (1995); H. A. Blackstead, D. B. Chrisey, J. D. Dow, J. S. Horwitz, A. E. Klunzinger, and D. B. Pulling, Physica C 235–240, 1539 (1994).

    Google Scholar 

  5. H. A. Blackstead, J. D. Dow, D. B. Chrisey, J. S. Horwitz, P. J. McGinn, M. A. Black, A. E. Klunzinger, and D. B. Pulling, Phys. Rev. B 54, 6122 (1996).

    Google Scholar 

  6. Z. Zou, K. Oka, T. Ito, and Y. Nishihara, Jpn. J. Appl. Phys. Lett. 36, L18 (1997).

    Google Scholar 

  7. K. Oka, Z. Zou, and T. Ito, Physica C 282–287, 479 (1997).

    Google Scholar 

  8. M. Luszczek, W. Sadowski, and J. Olchowik, Abstract in 5th International Conference on Materials and Mechanisms of Superconductivity: High Temperature Superconductors, Abstract Book, p. 143 (1997); W. Sadowski, M. Luszczek, J. Olchowik, B. Susla, and R. Czajka, Molec. Phys. Rpts. 20, 213 (1997).

  9. W. L. Hults, J. C. Cooley, E. J. Peterson, H. A. Blackstead, J. D. Dow, and J. L. Smith, “PrBa2Cu3O7 polycrystalline superconductor preparation,” Int. J. Mod. Phys. B, in press.

  10. A. I. Romanenko and L. P. Kozeeva, Phys. Lett. A 223, 132 (1996).

    Google Scholar 

  11. H. A. Blackstead, J. D. Dow, D. Goldschmidt, and D. B. Pulling, “Observation of superconductivity in Gd2−z CezSr2Cu2TiOx,” to be published.

  12. T. Usagawa, Y. Ishimaru, J. Wen, T. Utagawa, S. Koyama, and Y. Enomoto, Jpn. J. Appl. Phys. 36, L1583 (1997).

    Google Scholar 

  13. H. A. Blackstead, J. D. Dow, D. Goldschmidt, and D. B. Pulling, “Observation of predicted superconductivity in Gd2−z CezSr2Cu2TiOx with x≈10,” Phys. Lett. A (in press).

  14. R2−z CezSr2Cu2TaO10 has virtually the same properties as R2−z CezSr2Cu2NbO10. Likewise, RBa2Cu2TaO8 and RBa2Cu2NbO8 are very similar. See [16]. R2−z CezSr2Cu2RuO10 has also been fabricated [17] but appears to be somewhat different from its Nb and Ta counterparts, and will be discussed in our subsequent work.

  15. T. J. Goodwin, H. B. Radousky, and R. N. Shelton, Physica C 204, 212 (1992).

    Google Scholar 

  16. L. Bauerinfeld, W. Widder, and H. F. Braun, Physica C 253, 151 (1995).

    Google Scholar 

  17. S. K. Malik, H. Jhans, W. B. Yelon, and J. J. Rhyne, Solid State Commun. 85, 849 (1993).

    Google Scholar 

  18. H. Jhans, S. K. Malik, and R. Vijayaraghavan, Solid State Commun, 85, 105 (1993).

    Google Scholar 

  19. H. Jhans, S. K. Malik, and R. Vijayaraghavan, Physica C 215, 181 (1993).

    Google Scholar 

  20. M. Bennahmias, J. C. O'Brien, H. B. Radousky, T. J. Goodwin, P. Klavins, J. M. Link, C. A. Smith, and R. N. Shelton, Phys. Rev. B 46, 11986 (1992).

    Google Scholar 

  21. Z. Fisk, J. D. Thompson, E. Zirngiebl, J. L. Smith, and S. W. Cheong, Solid State Commun. 62, 743 (1987); P. Hor, R. L. Meng, Y.-Q. Wang, L. Gao, Z. J. Huang, J. Bechtold, K. Forster, and C. W. Chu, Phys. Rev. Lett. 58, 1891 (1987).

    Google Scholar 

  22. I. Felner and B. Brosh, Phys. Rev. B 43, 10364 (1991). T c0 = 82 K.

    Google Scholar 

  23. For a review, see H. B. Radousky, J. Mater. Res. 7, 1917 (1992).

    Google Scholar 

  24. H. A. Blackstead and J. D. Dow, Superlatt. Microstruct. 14, 231 (1993).

    Google Scholar 

  25. L. Soderholm, G. L. Goodman, U. Welp, C. W. Williams, and J. Bolender, Physica C 161, 252 (1989).

    Google Scholar 

  26. H. A. Blackstead and J. D. Dow, J. Supercond. 8, 613 (1995).

    Google Scholar 

  27. C. H. Pennington and C. P. Slichter, in Physical Properties of High-Temperature Superconductors, D. M. Ginsberg, ed. (World Scientific, Singapore), Vol. II, p. 269 et seq. (1990), especially p. 285, and references therein.

    Google Scholar 

  28. Ionization Potentials of Atoms and Atomic Ions, in Chemical Rubber Company Handbook, 74th edn., D. R. Lide, ed. (Chemical Rubber Publishing Company, Bombay, 1993–1994), pp. 10-205.

  29. See, for example, H. Ledbetter and M. Lei, Physica C 166, 483 (1990).

    Google Scholar 

  30. We include the BaO layers as being in the “vicinity” of the CuO chains of the YBa2Cu3O7 and YBa2Cu4O8 homologues.

  31. C. Q. Jin, Y. S. Yao, B. Q. Wu, Y. F. Xu, S. C. Liu, and W. K. Wang, Appl. Phys. Lett. 59, 3479 (1991).

    Google Scholar 

  32. Y. Tokura, H. Takagi, and S. Yoshida, Nature 337, 345 (1989).

    Google Scholar 

  33. A. Manthiram and Y. T. Zhu, Physica C 226, 165 (1994).

    Google Scholar 

  34. C. Lin, G. Lu, Z.-X. Liu, and Y. F. Zhang, Physica C 194, 66 (1992).

    Google Scholar 

  35. T. H. Meen, H. D. Yang, W. J. Huang, Y. C. Chen, W. H. Lee, J. H. Shieh, and H. C. Ku, Physica C 260, 117 (1996).

    Google Scholar 

  36. Y. K. Tao, M. Bonvalot, Y. Y. Sun, R. L. Meng, P. H. Hor, and C. W. Chu, Physica C 165, 13 (1990).

    Google Scholar 

  37. Y. K. Tao, Y. Y. Sun, J. Paredes, P. H. Hor, and C. W. Chu, J. Solid State Chem. 82, 176 (1989).

    Google Scholar 

  38. J. T. Markert, J. Beille, J. J. Neumeier, E. A. Early, C. L. Seaman, T. Moran, and M. B. Maple, Phys. Rev. Lett. 64, 80 (1990).

    Google Scholar 

  39. J. T. Markert, E. A. Early, T. Bjørnholm, S. Ghamaty, B. W. Lee, J. J. Neumeier, R. D. Price, C. L. Seaman, and M. B. Maple, Physica C 158, 178 (1989).

    Google Scholar 

  40. H. Ishii, T. Koshizawa, T. Hanyu, and S. Yamaguchi, Jpn. J. Appl. Phys. 32, 1070 (1993).

    Google Scholar 

  41. W. J. Zhu, Y. S. Yao, X. J. Zhou, B. Yen, C. Dong, Y. Z. Huang, and Z. X. Zhao, Physica C 230, 385 (1994).

    Google Scholar 

  42. C. L. Seaman, N. Y. Ayoub, T. Bjørnholm, E. A. Early, S. Ghamaty, B. W. Lee, J. T. Markert, J. J. Neumeier, P. K. Tsai, and M. B. Maple, Physica C 159, 391 (1989).

    Google Scholar 

  43. Pr2−z ThzCuO4, Nd2−z ThzCuO4 [43], and Tm2−z CazCuO4 [42] also assume the T′ crystal structure of Nd2−z CezCuO4, and superconduct.

  44. To our knowledge, the highest reported values of Tc for the T′ structure R2−z CezCuO4 superconductors are: 24.3 K for R = Pr, z = 0.10 [47], 21.2 K for R = Nd, z = 0.15 [39] or 32 K for pressure-fabricated material [32], 19.7 K for R = Sm, z = 0.15 [39], 7.5 K for R = Eu, z = 0.15 [36], 21 K for La0.28Nd1.57Ce0.15CuO4 [35], 47 K and 18.5 K for La0.95Eu0.95Ce0.10CuO4 [48], and La01.22Eu0.63Ce0.15CuO4 [46], respectively. In contrast, LaGd0.8Ce0.2CuO4 does not superconduct [37], nor does Nd1.85−x GdxCe0.15CuO4 for 1.1 ≤ x ≤ 1.85 [35,49], although Gd is soluble over the entire range 0 < x < 1.85.

  45. M. Yoshimoto, H. Koinuma, T. Hashimoto, J. Tanaka, S. Tanabe, and N. Soga, Physica C 181, 284 (1991).

    Google Scholar 

  46. M. Brinkmann, T. Rex, M. Stief, H. Bach, and K. Westerhalt, Physca C 269, 76 (1996).

    Google Scholar 

  47. H. Itoh, M. Kusuhashi, and M. Taniwaki, Jpn. J. Appl. Phys. 29, L1604 (1990).

    Google Scholar 

  48. G. H. Hwang, J. H. Shieh, and H. C. Ku, Physica C 185–189, 1163 (1991).

    Google Scholar 

  49. Rukang Li, Yingjie Zhu, Yitai Qian, and Zuyao Chen, Physica C 176, 19 (1991); Rukang Li, Yingjie Zhu, Cheng Xu, Zuyao Chen, Yitai Qian, and Chengao Fan, J. Solid State Chem. 94, 206 (1991).

    Google Scholar 

  50. A. J. Wright, R. A. Jennings, and C. Greaves, Supercond. Sci. Technol. 6, 514 (1993).

    Google Scholar 

  51. H. W. Zandbergen, R. J. Cava, J. J. Krajewski, and W. F. Peck, Jr., Physica C 192, 223 (1992); H. W. Zandbergen, R. J. Cava, J. J. Krajewski, and W. F. Peck, Jr., Physica C 196, 252 (1992).

    Google Scholar 

  52. R. J. Cava, J. J. Krajewski, H. Takagi, H. W. Zandbergen, R. B. Van Dover, W. F. Peck, Jr., and V. Hessen, Physica C 191, 237 (1992).

    Google Scholar 

  53. Shiwei Wang, Yitai Qian, Rukang Li, Zuyao Chen, Nanlin Wang, Liezhao Cao, Guien Zhou, and Yuheng Zhang, Physica C 210, 463 (1993).

    Google Scholar 

  54. H. A. Blackstead and J. D. Dow, J. Appl. Phys. 83, 1536 (1998).

    Google Scholar 

  55. H. A. Blackstead and J. D. Dow, Phys. Rev. B 57, 10798 (1998).

    Google Scholar 

  56. H. A. Blackstead and J. D. Dow, J. Appl. Phys. 83, 1540 (1998).

    Google Scholar 

  57. H. A. Blackstead and J. D. Dow, “Comparison of bulk R2−z CezCuO4 with superlattice R2−z CezCuO4/SrO/NbO2/SrO/CuO2/,” unpublished.

  58. An alternative explanation of the different nature of Pr in P2−z CezCuO4 only [60,61] is based on its nonmagnetic singlet ground state. See [62–64]. This issue deserves more study.

  59. G. Cao, J. Bolivar, J. W. O'Reilly, J. E. Crow, R. J. Kennedy, and P. Pernambuco-Wise, Physica B 186–188, 1004 (1993).

    Google Scholar 

  60. H. B. Radousky, T. J. Goodwin, and R. N. Shelton, Physica C 209, 155 (1993).

    Google Scholar 

  61. P. Allenspach, S.-W. Cheong, A. Dommann, P. Fischer, Z. Fisk, A. Furrer, H. R. Ott, and B. Rupp, Z. Phys. B 77, 185 (1989).

    Google Scholar 

  62. M. Matsuda, K. Yamada, K. Kakirai, H. Kadowaki, T. R. Thurston, Y. Endoh, Y. Hidaki, R. J. Birgeneau, M. A. Kastner, P. M. Gehring, A. H. Moudden, and G. Shirane, Phys. Rev. B 42, 10098 (1990).

    Google Scholar 

  63. G. L. Goodman, C. K. Loong, and L. Soderholm, J. Phys. Cond. Matter 3, 49 (1991).

    Google Scholar 

  64. H. A. Blackstead and J. D. Dow, J. Appl. Phys. 81, 6285 (1997).

    Google Scholar 

  65. H. A. Blackstead and J. D. Dow, Philos. Mag. B 72, 529 (1995).

    Google Scholar 

  66. T. H. Meen, H. D. Yang, W. J. Huang, Y. C. Chen, W. H. Lee, J. H. Hsieh, and H. C. Ku, Physica C 260, 117 (1996).

    Google Scholar 

  67. The critical concentrations of Gd required to drive Tc to zero in La2−βSrβCuO4 and Nd2−zCezCuO4 are uc≈0.38 and u′c≈1.13, respectively. The corresponding concentration for Ni-doped Nd2−z CezCuO4 is u″c = 0.0067. The condition for driving Tc to zero is roughly proportional to [69] the rates ФΞuc exp(−r/R Gd), Ф′Ξu′c exp(−r′/R Gd), and Ф″Ξu″c exp(−r″/R Ni) (using r≈2.69 Å and r′≈2.04 Å for the La-OI and Nd-OI distances, where OI is interstitial oxygen, and r″≈1.48 Å for the Cu-OI distance, and taking R Gd = 0.4 Å and R Ni = 0.7 Å). We find ratios of these rates (Ф/Ф′ and Ф″/Ф′) of the same order of magnitude for Gd and Ni doping: 0.5–8. This is a crude indication that the degradation of Tc in Gd-doped T and T′ structures and in Ni-doped Nd2−z CezCuO4 are all due to the breaking of pairs in the charge reservoirs: the range of values of uc exp(−r/R) is reduced by more than an order of magnitude from the range of critical compositions uc.

  68. A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 39, 1781 (1960); [English transl.: Soviet Phys. JETP 12, 1243–1254 (1961)]. See also [71].

    Google Scholar 

  69. O. Peña and M. Sargent, Prog. Solid State Chem. 19, 165 (1989).

    Google Scholar 

  70. Y.-J. Kim and A. W. Overhauser, Phys. Rev. B 49, 15799 (1994).

    Google Scholar 

  71. I. D. Brown and D. Altermatt, Acta Cryst. B 41, 244 (1985); D. Altermatt and I. D. Brown, Acta Cryst. B 41, 241 (1985); I. D. Brown, J. Solid State Chem. 82, 122 (1989). I. D. Brown and K. K. Wu, Acta Cryst. B 32, 1957 (1976); I. D. Brown, Structure and Bonding in Crystals, Vol. II, M. O'Keefe and A. Navrotsky, eds. (Academic Press, New York, 1980), pp. 1–20.

    Google Scholar 

  72. H. A. Blackstead and J. D. Dow, J. Superconduct. 9, 563 (1996).

    Google Scholar 

  73. H. A. Blackstead and J. D. Dow, J. Appl. Phys. 78, 7175 (1995).

    Google Scholar 

  74. J. C. Phillips, Phys. Rev. B 41, 8968 (1990) has advanced the viewpoint that the superconductivity originates in percolative paths between the CuO chains and the cuprate planes.

    Google Scholar 

  75. I. Bozovic and J. N. Eckstein, “Superconductivity in cuprate superlattices,” in Physical Properties of High-Temperature Superconductors V, D. M. Ginsberg, ed. (World Scientific, Singapore, 1996).

    Google Scholar 

  76. J. M. Triscone, O. Fischer, L. Antognazza, A. D. Kent, and M. J. Karkut, Phys. Rev. Lett. 64, 804 (1990).

    Google Scholar 

  77. L. Soderholm, C. W. Williams, and U. Welp, Physica C 179, 440 (1991).

    Google Scholar 

  78. Ca doping of RBa2Cu2NbO8 should be feasible, but could produce hypocharged oxygen in the NbO2 layers. Therefore the only tests capable of distinguishing between hypocharged oxygen and carriers (e.g., holes) as the generator of superconductivity are the ones that dope the material n-type.

  79. The bond-charge method [81] does not achieve self-consistency for any reasonable combination of Madelung potentials or ion charges in the cases of NdBa2Cu2NbO8 and NdBa2Cu2TaO8, although the Ta-based compound comes closer than the Nd-based compound. The most reasonable solutions of the model have Nb and Ta in the +5 charge states, but with the strength of the ionization potentials about 5 and 2 V too weak in magnitude for Nb and Ta, respectively. In both cases, the bond-valence-sum charge for Nd or Ta is essentially equal to +5|e|. The possibility of repairing this problem by considering Nb to be in the + 3 valence state (with seven oxygen ions instead of 8) appears remote: the magnitude of the ionization potential is too weak by ~2 V to form a Nb+3 state, and the stability of Ta in any charge-state except Ta+5 is questionable. This problem could be fixed by having the material adopt an off-stoichiometry configuration: increasing the number or charge of oxygen ions, or by increasing the number of cation vacancies. While there is evidence that these compounds prefer to form off-stoichiometry, especially the Nb variant, only these two insulators of the many materials we have studied have defied conforming to the self-consistent bond/charge model. One can speculate that some Schottky barrier or work function is responsible for the problem, and that screening would reduce it if the materials were metallic, but it is equally likely that the bond-valence-sum parameters for Nb and Ta need some revision.

  80. H. A. Blackstead and J. D. Dow, Phys. Rev. B 55, 6605 (1997).

    Google Scholar 

  81. H. A. Blackstead and J. D. Dow, “Constraints imposed by the data on a successful theory of high-temperature superconductivity,” Proc. SPIE 2397, Optoelectronic Integrated Circuit Materials—Physics and Devices, M. Razeghi, Y.-S. Park, and G. L. Witt, eds. (1995), pp. 617-632; “High-temperature superconductivity,” in Proceedings of the Second International Symposium on Quantum Confinement Physics and Applications, M. Cahay, S. Bandyopadhyay, J. P. Leburton, A. W. Kleinsasser, and M. A. Osman, eds. (Electrochemical Society, Inc., Pennington, New Jersey, 1994), Vol. 94–17, pp. 408–418.

  82. H. A. Blackstead and J. D. Dow, J. Phys. Chem. Solids 56, 1697 (1995); H. A. Blackstead, J. D. Dow, J. F. Federici, W. E. Packard, and D. B. Pulling, Physica C 235–240, 2161 (1994).

    Google Scholar 

  83. H. A. Blackstead and J. D. Dow, Physica C 265, 143 (1996).

    Google Scholar 

  84. R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck, Jr., and L. W. Rupp, Jr., Physica C 165, 419 (1990).

    Google Scholar 

  85. Y. Tokura, J. B. Torrance, T. C. Huang, and A. I. Nazzal, Phys. Rev. B 38, 7156 (1988).

    Google Scholar 

  86. M. J. Kramer, S. I. Yoo, R. W. McCallum, W. B. Yelon, H. Xie, and P. Allenspach, Physica C 219, 145 (1994).

    Google Scholar 

  87. H. A. Blackstead and J. D. Dow, Solid State Commun. 95, 613 (1995); “Implications of magnetic pair breaking in YBa2Cu3O7 homologues,” in Quantum Confinement III: Quantum Wires and Dots, M. Cahay, S. Bandyopadhyay, J.-P. Leburton, and M. Razeghi, eds. (Electrochemical Society, Inc., Pennington, New Jersey, 1990), pp. 339–354.

    Google Scholar 

  88. See, for example, M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996), p. 197.

    Google Scholar 

  89. B. V. Kresin, H. Morawitz, and S. A. Wolf, Mechanisms of Conventional and High-T c Superconductivity (Oxford, New York, 1993), pp. 103-127.

  90. D. N. Basov, R. Liang, D. A. Bonn, W. N. Hardy, B. Dabrowski, M. Quijada, D. B. Tanner, J. P. Rice, D. M. Ginsberg, and T. Timusk, Phys. Rev. Lett. 74, 598 (1995).

    Google Scholar 

  91. L. Hoffmann, A. A. Manuel, M. Peter, E. Walker, M. Gauthier, A. Shukla, B. Barbiellini, S. Massidda, G. Adam, S. Adam, W. N. Hardy, and R. X. Liang, Phys. Rev. Lett. 71, 4047 (1993).

    Google Scholar 

  92. A. Shukla, L. Hoffmann, A. A. Manuel, E. Walker, B. Barbiellini, and M. Peter, Phys. Rev. B 51, 6028 (1995).

    Google Scholar 

  93. S. Sridhar, Bull. Am. Phys. Soc. 42, 698 (1997).

    Google Scholar 

  94. H. A. Blackstead and J. D. Dow, Pis'ma Zh. Eksp. Teor. Fiz. 59, 262 (1994) English transl.: [JETP Lett 59, 283 (1994)] and references therein.

    Google Scholar 

  95. A. Matushita, Y. Yamada, N. Yamada, S. Horii, and T. Matsumoto, Physica C 242, 381 (1995).

    Google Scholar 

  96. N. Seiji, S. Adachi, and H. Yamauchi, Physica C 227, 377 (1994).

    Google Scholar 

  97. G. Cao, R. J. Kennedy, J. W. O'Reilly, J. E. Crow, P. Pernambuco-Wise, and S. T. Ting, Physica B 186–188, 1022 (1993).

    Google Scholar 

  98. E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, Phys. Rev. B 40, 2617 (1989).

    Google Scholar 

  99. R. G. Goodrich, C. Grienier, D. Hall, A. Lacerda, E. G. Haanappel, D. Rickel, T. Northington, R. Schwarz, F. M. Mueller, D. D. Koelling, J. Vuillemin, L. Van Bockstal, M. L. Norton, and D. H. Lowndes, J. Phys. Chem. Solids 54, 1251 (1993).

    Google Scholar 

  100. M. K. Wu, D. Y. Chen, F. Z. Chien, S. R. Sheen, D. C. Ling, C. Y. Tai, G. Y. Tseng, D. H. Chen, and F. C. Zhang, Z. Phys. B 102, 37 (1997).

    Google Scholar 

  101. J. Sichelschmidt, B. Elaschner, A. Loidl, and B. I. Kochelaev, Phys. Rev. B 51, 9199 (1995).

    Google Scholar 

  102. In low-defect YBa2Cu3Ox crystals that are incompletely oxygenated, such as for x≈0.8, electron-spin resonance has been observed over a limited temperature range (T > 80 K), which is thought to be associated with isolated Cu+2 ions at the ends of chain fragments.

  103. See, for example, the discussion of Zhang-Rice singlets in F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Google Scholar 

  104. See [106] for a discussion of the experimental inadequacy of Zhang-Rice singlets.

  105. J. L. Sarrao, D. P. Young, Z. Fisk, E. G. Moshopoulou, J. D. Thompson, B. C. Chakoumakos, and S. E. Nagler, Phys. Rev. B 54, 12014 (1996), and to be published.

    Google Scholar 

  106. For example, molecular orbitals associated with Cu in CuO chains, but directed toward the BaO layers, or combinations of orbitals similar to those proposed for cuprate-plane superconductivity [59,61–64,104] might prove to be appropriate.

  107. R. S. Liu, J. R. Cooper, J. W. Loram, W. Zhou, W. Lo, P. P. Edwards, W. Y. Liang, and L. S. Chen [Solid State Commun. 76, 679 (1990)] have reported 20 K superconductivity in p-type Ca-doped, severely deoxygenated YBa2 Cu3O6.1 with almost no CuO chain oxygen. This low-temperature superconductivity might be associated with BaO or even with cuprate planes, but appears to have a different origin from the superconductivity of YBa2Cu3Ox with x ≥ 6.5, especially when the deoxygenated material clearly has more holes than the higher-Tc superconductor, such as for x = 6.5. See also G. Böttger, I. Mangelschots, E. Kaldis, P. Fischer, Ch. Krüger, and F. Fauth, J. Phys. Cond. Matter 8, 8889 (1996).

    Google Scholar 

  108. If the rare-earth ion is crystal-field split [70], then it can be adjacent to the superconducting condensate and not break Cooper pairs. See [59,61,63,64,70].

  109. Computed for the data of [111,112].

  110. R. J. Cava, B. Batlogg, K. M. Rabe, E. A. Rietman, P. K. Gallagher, and L. W. Rupp, Jr., Physica C 156, 523 (1988).

    Google Scholar 

  111. J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).

    Google Scholar 

  112. In the major high-temperature superconductors, the charge reservoirs contain no Cu, except for nonmagnetic CuO chains (which have adjacent BaO or SrO layers) in the 123-type compounds and in R2−z CezSr2Cu2NbO10 homologues.

  113. M. Park, M. J. Kramer, K. W. Dennis, and R. W. McCallum, Physica C 259, 43 (1996).

    Google Scholar 

  114. J. B. Barner, C. T. Rogers, A. Inam, R. Ramesh, and S. Bersey, Appl. Phys. Lett. 59, 742 (1991).

    Google Scholar 

  115. Y. Suzuki, J.-M. Triscone, C. B. Eom, M. R. Beasley, and T. H. Geballe, Phys. Rev. Lett. 73, 328 (1994); Y. Suzuki, J.-M. Triscone, M. R. Beasley, and T. H. Geballe, Phys. Rev. B 52, 6858 (1995).

    Google Scholar 

  116. P. R. Slater and C. Greaves, Supercond. Sci. Technol. 5, 205 (1992); A. Tokiwa, Y. Syono, M. Kikuchi, R. Suzuki, T. Kajitani, N. Kobayashi, P. Sasaki, O. Nakatso, and Y. Moto, Jpn. J. Appl. Phys. 27, L1009 (1988).

    Google Scholar 

  117. H. A. Blackstead, J. D. Dow, J. F. Federici, W. E. Packard, and D. B. Pulling, Physica C 235–240, 2161 (1994).

    Google Scholar 

  118. H. A. Blackstead and J. D. Dow, unpublished analysis of the data of [87].

  119. H. A. Blackstead and J. D. Dow, J. Phys. Chem. Solids 56, 1697 (1995).

    Google Scholar 

  120. J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).

    Google Scholar 

  121. P. G. Radaelli, D. G. Hinks, A. W. Mitchell, B. A. Hunter, J. L. Wagner, B. Dabrowski, K. G. Vandervoort, H. K. Viswanathan, and J. D. Jorgensen, Phys. Rev. B 49, 4163 (1994).

    Google Scholar 

  122. A. J. Freeman (private communication) and co-workers have argued that the local state density at the Fermi energy is so low near the rare-earth site that the site is effectively magnetically isolated from the Fermi sea. However, the spin relaxation on that site is Korringa-like (indicating efficient coupling to the Fermi liquid), and the state-density at the Ba site is comparably low—and Nd on a Ba site certainly breaks pairs in NdBa2Cu3Ox. See A. J. Freeman, J. Yu, S. Massidda, and D. D. Koelling, Phys. Lett. A 122, 198 (1987); J. T. Markert, T. W. Noh, S. E. Russek, and R. M. Cotts, Solid State Commun. 63, 847 (1987).

    Google Scholar 

  123. H. A. Blackstead, J. D. Dow, W. E. Packard, and D. B. Pulling, Physica C 235–240, 1363 (1994).

    Google Scholar 

  124. P. Yossefov, G. E. Shter, G. M. Reisner, A. Friedman, Y. Yeshurun, and G. S. Grader [Physica C 275, 299 (1997)] have reported Tc≈98 K for NdBa2Cu3O7.

    Google Scholar 

  125. Our data [5] on granular materials suggest that the onset critical temperature of perfect PrBa2Cu3O7 might well be ≈98 K.

  126. Of course, the superconducting PrBa2Cu3O7 of [4–11] can easily be explained as having their critical temperatures degraded by PrBa defects, but this requires that the condensate be in the vicinity of the CuO chains, not in the cuprate planes.

  127. The ionic radii of Ca+2, Sr+2, Ba+2; Hf+4, Ce+4, Th+4; La+3, Ce+3, Pr+3, Nd+3, Sm+3, Eu+3, Gd+3, Y+3, and Tm+3 are (in Å): 0.99, 1.12, 1.34, 0.78, 0.94, 1.02, 1.14, 1.07, 1.06, 1.04, 1.00, 0.98, 0.97, 0.92, and 0.87, respectively. See F. S. Galasso, Structure, Properties, and Preparation of Perovskite-Type Compounds (Pergamon Press, Oxford, 1969), p. 52.

    Google Scholar 

  128. 2.48 Å for PrBa2Cu3O7 [132]; 2.37 Å for PrBa2Cu4O8 [130]; and 2.69 Å for Pr2−z CezCuO4 with z = 0.15 [131].

  129. Yuh Yamada, S. Horii, N. Yamada, Z. Guo, Y. Kodama, K. Kawamoto, U. Mizutani, and I. Hirabayashi, Physica C 231, 131 (1994).

    Google Scholar 

  130. J. Y. Markert, E. A. Early, T. Bjørnholm, S. Ghamaty, B. W. Lee, J. J. Neumeier, R. D. Price, C. L. Seaman, and M. B. Maple, Physica C 158, 178 (1989).

    Google Scholar 

  131. S. R. Malik, W. B. Yelon, J. J. Rhyne, W. R. James, R. Prasada, K. Adhikary, and N. C. Soni, Solid State Commun. 89, 383 (1994).

    Google Scholar 

  132. J. Ye, Z. Zou, A. Matsushita, K. Oka, Y. Nishihara, and T. Matsumoto, Phys. Rev. Lett. 80, 1074 (1998).

    Google Scholar 

  133. Y. Xu and W. Guan, Solid State Commun. 80, 105 (1991); Appl. Phys. Lett. 59, 2183 (1991); Physica C 183, 105 (1991); Appl. Phys. Lett. 59, 2183 (1991).

    Google Scholar 

  134. H. A. Blackstead and J. D. Dow, Phys. Lett. A 26, 97 (1997).

    Google Scholar 

  135. D. J. Scalapino, Phys. Rep. 250, 1 (1995).

    Google Scholar 

  136. J. Kondo, Y. Asai, and S. Nagai, J. Phys. Soc. Jpn. 57, 4434 (1988).

    Google Scholar 

  137. H. A. Blackstead and J. D. Dow, Superlatt. Microstruct. 17, 473 (1995).

    Google Scholar 

  138. L. Soderholm, C.-K. Loong, G. L. Goodman, and B. D. Dabrowski, Phys. Rev. B 43, 7923 (1991).

    Google Scholar 

  139. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957); 108, 1175 (1957).

    Google Scholar 

  140. The ionization potentials to the +2 charge state of Ni, Cu, and Zn are 18.2 V, 20.3 V, and 18.0 V [29].

  141. The ionic radii of Ni+2, Cu+2, and Zn+2 are 0.69, 0.72, and 0.7 Å, respectively [128].

  142. T. Yamashita, A. Kawakami, T. Nishihara, Y. Hirotsu, and M. Takata, Jpn. J. Appl. Phys. 26, L635 (1987); T. Yamashita, A. Kawakami, T. Nishihara, M. Takata, and K. Kishio, Jpn. J. Appl. Phys. 26, L671 (1987); T. J. Witt, Phys. Rev. Lett. 61, 1423 (1988); D. Esteve, J. M. Martinis, C. Urbina, M. H. Devoret, G. Collin, P. Monod, M. Ribault, and A. Revcolevschi, Europhys. Lett. 3, 1237 (1987); R. H. Koch, C. P. Umbach, G. J. Clark, P. Chaudhari, and R. B. Laibowitz, Appl. Phys. Lett. 51, 200 (1987); C. E. Gough, M. S. Colclough, E. M. Forgan, R. G. Jordan, M. Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Asbell, and S. Sutton, Nature 326, 855 (1987); P. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo, C. A. Murray, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 59, 2592 (1987).

    Google Scholar 

  143. We have recently become aware of a dissenting view [145,147] concerning these facts, especially for YBa2Cu4O8. Compare the results reported by these authors with those of [146], while paying particular attention to the evidence that the impurities occupy the same Cu sites.

  144. S. K. Agarwal and A. V. Narlikar, Prog. Cryst. Growth Charact. 28, 219 (1994).

    Google Scholar 

  145. H. A. Blackstead and J. D. Dow, Philos. Mag. B 74, 681 (1996).

    Google Scholar 

  146. G.-q. Zheng, T. Odaguchi, Y. Kitaoka, K. Asayama, Y. Kodama, K. Mizuhashi, and S. Uchida, Physica C 263, 367 (1996).

    Google Scholar 

  147. D. Pines, in Strongly Correlated Electronic Materials: Los Alamos Symposium 1993, K. Bedell, Z. Wang, D. E. Meltzer, A. Valatsky, and E. Abrahams, eds. (Addison-Wesley, Reading, Massachusetts, 1994).

    Google Scholar 

  148. H. A. Blackstead and J. D. Dow, “Self-test of spin-fluctuation pairing,” Europhys. Lett., in press.

  149. F. Bridges, J. B. Boyce, and R. I. Johnson, Mater. Res. Soc. Symp. 275, 143 (1992); A. M. Balagurov, J. Piechota, and A. Pajaczkowska, Solid State Commun. 78, 407 (1991).

    Google Scholar 

  150. F. Bridges, J. B. Boyce, T. Claeson, T. H. Geballe, and J. M. Tarascon, Phys. Rev. B 42, 2137 (1990); F. Bridges, G. G. Li, J. B. Boyce, and T. Claeson, Phys. Rev. B 48, 1266 (1993).

    Google Scholar 

  151. D. Goldschmidt, Y. Direktovitch, A. Knizhnik, and Y. Eckstein, Phys. Rev. B 54, 13348 (1996).

    Google Scholar 

  152. J. E. Hirsch and F. Marsiglio, Physica C 162–164, 591 (1989).

    Google Scholar 

  153. D. I. Khomskii and A. Z. Zvezdin, Solid State Commun. 66, 651 (1988).

    Google Scholar 

  154. The Madelung potential at a Ce site in Nd2−z CezCuO4 is ≈ − 29.85 V.

  155. The corresponding inscribed cage radii for R2−z CezSr2Cu2NbO10 are 1.036, 1.046, 1.034, and 1.043 Å, respectively, for R = Pr, Nd, Sm, and Eu, and are all smaller than the critical radius for Z slightly larger than unity. (Recall that some nonzero p-type doping is required, and that we have A(O−1) = 1.025 Å.)

  156. In the R2−z CezSr2Cu2NbO10 compounds, the volumes of the interstitial cages are smaller than for Gd2−z CezCuO4's cage, and so we expect the interstitial not to form easily. See [57] H. A. Blackstead and J. D. Dow, Phys. Rev. B 57, 10798 (1998).

    Google Scholar 

  157. A. Nath, N. K. Kopelev, V. Chechersky, J.-L. Peng, R. L. Greene, B.-h. O, M. I. Larkin, and J. T. Markert, Science 265, 73 (1994).

    Google Scholar 

  158. P. G. Radaelli, J. D. Jorgensen, A. J. Schultz, J. L. Peng, and R. L. Greene, Phys. Rev. B 49, 15322 (1994).

    Google Scholar 

  159. M. Lehmann, private communication.

  160. C. E. Kuklewicz and J. Markert, Physica C 253, 308 (1995).

    Google Scholar 

  161. The effective Eu moment decreases with temperature.

  162. High-pressure fabrication can facilitate formation of Nd2−z CezCuO4 homologues by permitting rare-earth ions to form bonds that would not form without pressure. High-pressure oxygenation can insert more interstitial oxygen into the sample.

  163. We are unable to find evidence in the literature that Tb2CuO4 has been fabricated or doped.

  164. For R = Pr, Nd, Sm, and Eu, we find Z to be 1.68, 1.72, 1.78, and 1.76, respectively.

  165. H. A. Blackstead and J. D. Dow, J. Supercond. 8, 613 (1995).

    Google Scholar 

  166. S. C. Cheng, V. P. Dravid, T. J. Goodwin, R. N. Shelton, and H. B. Radousky, Phys. Rev. B 53, 11779 (1996).

    Google Scholar 

  167. H. A. Blackstead and J. D. Dow, Philos. Mag. B 72, 529 (1995).

    Google Scholar 

  168. J. Arai, H. Shimizu, D. Yamaguchi, Physica C 185–189, 1205 (1991).

    Google Scholar 

  169. I. Mangelschots, N. H. Anderson, B. Lebech, A. Wisniewski, and C. S. Jacobsen, Physica C 203, 369 (1992).

    Google Scholar 

  170. S. N. Mao, X. X. Xi, Q. Li, L. Takeuchi, S. Bhattacharya, C. Kwon, C. Doughty, A. Walkenhorst, T. Venkatesan, C. B. Whan, J. L. Peng, and R. L. Greene, Appl. Phys. Lett. 62, 2425 (1993).

    Google Scholar 

  171. I. D. Brown and D. Altermatt, Acta Cryst. B 41, 244 (1985); D. Altermatt and I. D. Brown, Acta Cryst. B 41, 241 (1985); I. D. Brown, J. Solid State Chem. 82, 122 (1989). I. D. Brown and K. K. Wu, Acta Cryst. B 32, 1957 (1976); I. D. Brown, Structure and Bonding in Crystals, Vol. II, M. O'Keefe and A. Navrotsky, eds. (Academic Press, New York, 1980), pp. 1–20.

    Google Scholar 

  172. A. J. Schultz, J. D. Jorgensen, J. L. Peng, and R. L. Greene, Phys. Rev. B 53, 5157 (1996). See footnote 45 of [81] and P. Ghigna, G. Spinolo, M. Scavini, U. Anselmi Tamburini, and A. V Chadwick, Physica C 253, 147(1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackstead, H.A., Dow, J.D. Rare-Earths as Probes of High-Temperature Superconductivity. Journal of Superconductivity 11, 615–639 (1998). https://doi.org/10.1023/A:1022643531034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022643531034

Navigation