Skip to main content

Ergodic Theorems for Iterated Function Systems Controlled by Regenerative Sequences

Abstract

Iterated function systems are considered, where the function to iterate in each step is determined by a regenerative sequence. Ergodic theorems of distributional and law of large numbers types are obtained under log-average contractivity conditions.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Akerlund-Biström, C. (1997). A generalization of the Hutchinson dístance and applications. Random Comput. Dynam. 5, 159–176.

    Google Scholar 

  2. Athreya, K. B., and Ney, P. (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245, 493–501.

    Google Scholar 

  3. Barnsley, M. F., and Demko, S. (1985). Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London Ser. A 399, 243–275.

    Google Scholar 

  4. Barnsley, M. F., Elton, J. H., and Hardin, D. P. (1989). Recurrent iterated function systems. Constr. Approx. 5, 3–31.

    Google Scholar 

  5. Barrlund, A., Wallin, H., and Karlsson, J. (1997). Iteration of Möbius transformations and attractors on the real line. Computers Math. Appl. 33(1/2), 1–12.

    Google Scholar 

  6. Berger, M. A. (1993). An Introduction to Probability and Stochastic Processes, Springer-Verlag, New York.

    Google Scholar 

  7. Berger, M. A., and Soner, H. M. (1988). Random walks generated by affine mappings. J. Theoret. Probab. 1, 239–254.

    Google Scholar 

  8. Elton, J. H. (1987). An ergodic theorem for iterated maps. Ergodic Th. Dynam. Syst. 7, 481–488.

    Google Scholar 

  9. Elton, J. H. (1990). A multiplicative ergodic theorem for Lipschitz maps. Stoch. Process. Appl. 34, 39–47.

    Google Scholar 

  10. Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. I, Third edition, John Wiley, New York.

    Google Scholar 

  11. Gadde, E. (1994). Stable IFSs with probabilities. An ergodic theorem. Res. Reports, No. 10, Department of Mathematics, Umeä University.

  12. Högnäs, G., and Mukherjea, A. (1995). Probability Measures on Semigroups: Convolution Products, Random Walks, and Random Matrices, Plenum, New York.

    Google Scholar 

  13. Iosifescu, M., and Theodorescu, R. (1969). Random Processes and Learning, Springer-Verlag, New York.

    Google Scholar 

  14. Kaijser, T. (1994). On a theorem of Karlin. Acta Appl. Math. 34, 51–69.

    Google Scholar 

  15. Kaijser, T. (1995). On invariant measures associated to products of random matrices, Festschrift in Honor of Lennart Carleson and Yngve Domar, Proc. Conf. Department of Mathematics, Uppsala University, 1993, Almqvist and Wiksell, Stockholm, 191–203.

    Google Scholar 

  16. Kovalenko, I. N. (1977). Limit theorems of reliability theory. Kibernetika 6, 106–116.

    Google Scholar 

  17. Letac, G. (1986). A contraction principle for certain Markov chains and its applications. Contemp. Math. 50, 263–273.

    Google Scholar 

  18. Lindvall, T. (1992) Lectures on the Coupling Method, John Wiley, New York.

    Google Scholar 

  19. Lu, G., and Mukherjea, A. (1997). Invariant measures and Markov chains with random transition probabilities. Prob. Math. Stat. 17, 115–138.

    Google Scholar 

  20. Meyn, S. P., and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability, Springer-Verlag, London.

    Google Scholar 

  21. Mukherjea, A. (1993). Recurrent random walks on nonnegative matrices, II. Prob. Th. Rel. Fields 96, 415–434.

    Google Scholar 

  22. Nummelin, E. (1978). A splitting technique for Harris recurrent Markov chains, Z. Wahrsch. verw. Gebiete 43, 309–318.

    Google Scholar 

  23. Rényi, A. (1958). On mixing sequences of sets. Acta Math. Acad. Sci. Hungary 9, 215–228.

    Google Scholar 

  24. Silvestrov, D. S. (1981). Remarks on the strong law of large numbers for accumulation processes. Th. Prob. Math. Stat. 22, 131–143.

    Google Scholar 

  25. Silvestrov, D. S. (1996). Recurrent relations for generalized hitting times for semi-Markov processes. Ann. Appl. Prob. 6, 617–649.

    Google Scholar 

  26. Stenflo, Ö. (1996). Iterated function systems controlled by a semi-Markov chain. Th. Stoch. Proc. 18, 305–313.

    Google Scholar 

  27. Tong, H. (1990). Non-Linear Time Series: A Dynamical System Approach, Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silvestrov, D.S., Stenflo, Ö. Ergodic Theorems for Iterated Function Systems Controlled by Regenerative Sequences. Journal of Theoretical Probability 11, 589–608 (1998). https://doi.org/10.1023/A:1022642328845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022642328845

  • Ergodic theorem
  • stochastic dynamical system
  • iterated function system
  • regenerative process