Abstract
Iterated function systems are considered, where the function to iterate in each step is determined by a regenerative sequence. Ergodic theorems of distributional and law of large numbers types are obtained under log-average contractivity conditions.
This is a preview of subscription content, access via your institution.
REFERENCES
Akerlund-Biström, C. (1997). A generalization of the Hutchinson dístance and applications. Random Comput. Dynam. 5, 159–176.
Athreya, K. B., and Ney, P. (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245, 493–501.
Barnsley, M. F., and Demko, S. (1985). Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London Ser. A 399, 243–275.
Barnsley, M. F., Elton, J. H., and Hardin, D. P. (1989). Recurrent iterated function systems. Constr. Approx. 5, 3–31.
Barrlund, A., Wallin, H., and Karlsson, J. (1997). Iteration of Möbius transformations and attractors on the real line. Computers Math. Appl. 33(1/2), 1–12.
Berger, M. A. (1993). An Introduction to Probability and Stochastic Processes, Springer-Verlag, New York.
Berger, M. A., and Soner, H. M. (1988). Random walks generated by affine mappings. J. Theoret. Probab. 1, 239–254.
Elton, J. H. (1987). An ergodic theorem for iterated maps. Ergodic Th. Dynam. Syst. 7, 481–488.
Elton, J. H. (1990). A multiplicative ergodic theorem for Lipschitz maps. Stoch. Process. Appl. 34, 39–47.
Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. I, Third edition, John Wiley, New York.
Gadde, E. (1994). Stable IFSs with probabilities. An ergodic theorem. Res. Reports, No. 10, Department of Mathematics, Umeä University.
Högnäs, G., and Mukherjea, A. (1995). Probability Measures on Semigroups: Convolution Products, Random Walks, and Random Matrices, Plenum, New York.
Iosifescu, M., and Theodorescu, R. (1969). Random Processes and Learning, Springer-Verlag, New York.
Kaijser, T. (1994). On a theorem of Karlin. Acta Appl. Math. 34, 51–69.
Kaijser, T. (1995). On invariant measures associated to products of random matrices, Festschrift in Honor of Lennart Carleson and Yngve Domar, Proc. Conf. Department of Mathematics, Uppsala University, 1993, Almqvist and Wiksell, Stockholm, 191–203.
Kovalenko, I. N. (1977). Limit theorems of reliability theory. Kibernetika 6, 106–116.
Letac, G. (1986). A contraction principle for certain Markov chains and its applications. Contemp. Math. 50, 263–273.
Lindvall, T. (1992) Lectures on the Coupling Method, John Wiley, New York.
Lu, G., and Mukherjea, A. (1997). Invariant measures and Markov chains with random transition probabilities. Prob. Math. Stat. 17, 115–138.
Meyn, S. P., and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability, Springer-Verlag, London.
Mukherjea, A. (1993). Recurrent random walks on nonnegative matrices, II. Prob. Th. Rel. Fields 96, 415–434.
Nummelin, E. (1978). A splitting technique for Harris recurrent Markov chains, Z. Wahrsch. verw. Gebiete 43, 309–318.
Rényi, A. (1958). On mixing sequences of sets. Acta Math. Acad. Sci. Hungary 9, 215–228.
Silvestrov, D. S. (1981). Remarks on the strong law of large numbers for accumulation processes. Th. Prob. Math. Stat. 22, 131–143.
Silvestrov, D. S. (1996). Recurrent relations for generalized hitting times for semi-Markov processes. Ann. Appl. Prob. 6, 617–649.
Stenflo, Ö. (1996). Iterated function systems controlled by a semi-Markov chain. Th. Stoch. Proc. 18, 305–313.
Tong, H. (1990). Non-Linear Time Series: A Dynamical System Approach, Oxford University Press, Oxford.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Silvestrov, D.S., Stenflo, Ö. Ergodic Theorems for Iterated Function Systems Controlled by Regenerative Sequences. Journal of Theoretical Probability 11, 589–608 (1998). https://doi.org/10.1023/A:1022642328845
Issue Date:
DOI: https://doi.org/10.1023/A:1022642328845
- Ergodic theorem
- stochastic dynamical system
- iterated function system
- regenerative process