Skip to main content
Log in

Inhibition of the Neutrophil NADPH Oxidase by Adenosine Is Associated with Increased Movement of Flavocytochrome b Between Subcellular Fractions

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Adenosine is a potent inhibitor of reactive oxygen species (ROS) production by the NADPH oxidase in fMLF-stimulated neutrophils. Although much is known about the pharamacology and signal transduction of this effect, it is not known how adenosine affects assembly and localization of the NADPH oxidase components within the neutrophil. We report here that adenosine pretreatment of fMLF-stimulated neutrophils results in decreased plasma membrane/secretory granule content of the flavocytochrome b components (p22phox and gp91phox) of the NADPH oxidase, which correlates with inhibition of ROS production. Adenosine treatment did not affect upregulation of secretory and specific granule surface markers, confirming that degranulation was not impaired by adenosine. However, adenosine treatment did result in increased movement of cell-surface flavocytochrome b to heavy granule fractions in fMLF-stimulated neutrophils. These data suggest that adenosine-mediated effects on neutrophil ROS production are due, in part to endocytosis and/or redistribution of flavocytochrome b between various subcellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Witko-Sarsat, V., P. Rieu, B. Descamps-Latscha, P. Lesavre, and L. Halbwachs-Mecarelli. 2000. Neutrophils: Molecules, functions and pathophysiological aspects. Lab. Invest. 80:617-653.

    Google Scholar 

  2. Burg, N. D., and M. H. Pillinger. 2001. The neutrophil: Function and regulation in innate and humoral immunity. Clin. Immunol. 99:7-17.

    Google Scholar 

  3. Ali, H., B. Haribabu, R. M. Richardson, and R. Snyderman. 1997. Mechanisms of inflammation and leukocyte activation. Med. Clin. North Am. 81:1-28.

    Google Scholar 

  4. Ricevuti, G. 1997. Host tissue damage by phagocytes. Ann. N.Y. Acad. Sci. 832:426-448.

    Google Scholar 

  5. Babior, B. M. 2000. Phagocytes and oxidative stress. Am. J. Med. 109:33-34.

    Google Scholar 

  6. Clark, R. A. 1999. Activation of the neutrophil respiratory burst oxidase. J. Infect. Dis. 179:S309-S317.

    Google Scholar 

  7. Nauseef, W. M. 1999. The NADPH-dependent oxidase of phagocytes. Proc. Assoc. Am. Physicians 111:373-382.

    Google Scholar 

  8. Jesaitis, A. J. 1995. Structure of human phagocyte cytochrome b and its relationship to microbicidal superoxide production. J. Immunol. 155:3286-3288.

    Google Scholar 

  9. Clark, R. A. 1999. Activation of the neutrophil respiratory burst oxidase. J. Infect. Dis. 179:S309-S317.

    Google Scholar 

  10. DeLeo, F. R., and M. T. Quinn. 1996. Assembly of the phagocyte NADPH oxidase: Molecular interaction of oxidase proteins. J. Leukoc. Biol. 60:677-691.

    Google Scholar 

  11. Bouma, M. G., F. A. van den Wildenberg, and W. A. Buurman. 1997. The anti-inflammatory potential of adenosine in ischemiareperfusion injury: established and putative beneficial actions of a retaliatory metabolite. Shock 8:313-320.

    Google Scholar 

  12. Cronstein, B. N., R. I. Levin, M. Philips, R. Hirschhorn, S. B. Abramson, and G. Weissmann. 1992. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J. Immunol. 148:2201-2206.

    Google Scholar 

  13. Tsuruta, S., S. Ito, and H. Mikawa. 1993. Effects of adenosine and its analogues on actin polymerization in human polymorphonuclear leucocytes. Clin. Exp. Pharmacol. Physiol. 20:89-94.

    Google Scholar 

  14. Stewart, A. G., and T. Harris. 1993. Adenosine inhibits plateletactivating factor, but not tumour necrosis factor-alpha-induced priming of human neutrophils. Immunology 78:152-158.

    Google Scholar 

  15. Barnes, C. R., G. L. Mandell, H. T. Carper, S. Luong, and G. W. Sullivan. 1995. Adenosine modulation of tumor necrosis factor-alpha-induced neutrophil activation. Biochem. Pharmacol. 50:1851-1857.

    Google Scholar 

  16. Cronstein, B. N., S. B. Kramer, G. Weissmann, and Hirschhorn, R. 1983. Adenosine: A physiological modulator of superoxide anion generation by human neutrophils. J. Exp. Med. 158:1160-1177.

    Google Scholar 

  17. Richter, J. 1992. Effect of adenosine analogues and cAMP-raising agents on TNF-, GM-CSF-, and chemotactic peptide-induced degranulation in single adherent neutrophils. J. Leukoc. Biol. 51:270-275.

    Google Scholar 

  18. Ottonello, L., P. Barbera, P. Dapino, C. Sacchetti, and F. Dallegri. 1997. Chemoattractant-induced release of elastase by lipopolysaccharide (LPS)-primed neutrophils; inhibitory effect of the antiinflammatory drug nimesulide. Clin. Exp. Immunol. 110:139-143.

    Google Scholar 

  19. Cronstein, B. N. 1994. Adenosine, an endogenous anti-inflammatory agent. J. Appl. Physiol. 76:5-13.

    Google Scholar 

  20. Cronstein. B. N., L. Daguma, D. Nichols, A. J. Hutchison, and M. Williams. 1990. The adenosine ?neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J. Clin. Invest. 85:1150-1157.

    Google Scholar 

  21. Burkey, T. H., and R. O. Webster. 1993. Adenosine inhibits fMLPstimulated adherence and superoxide anion generation by human neutrophils at an early step in signal transduction. Biochim. Biophys. Acta 1175:312-318.

    Google Scholar 

  22. Fredholm, B. B. 1997. Purines and neutrophil leukocytes. Gen. Pharmacol. 28:345-350.

    Google Scholar 

  23. Revan, S., M. C. Montesinos, D. Naime, S. Landau, and B. N. Cronstein. 1996. Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine /threonine protein phosphatase. J. Biol. Chem. 271:17114-17118.

    Google Scholar 

  24. Nakamura, M., M. Murakami, T. Koga, Y. Tanaka, and S. Minakami. 1987. Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: Immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood 69:1404-1408.

    Google Scholar 

  25. Burritt, J. B., M. T. Quinn, M. A. Jutila, C. W. Bond, and A. J. Jesaitis. 1995. Topological mapping of neutrophil cytochrome b epitopes with phage-display libraries. J. Biol. Chem. 270:16974-16980.

    Google Scholar 

  26. DeLeo, F. R., L. Yu, J. B. Burritt, L. R. Loetterle, C. W. Bond, A. J. Jesaitis, and M. T. Quinn. 1995. Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc. Natl. Acad. Sci. USA 92:7110-7114.

    Google Scholar 

  27. DeLeo, F. R. M. A. Jutila, and M. T. Quinn. 1996.Characterization of peptide diffusion into electropermeabilized neutrophils. J. Immunol. Methods 198:35-49.

    Google Scholar 

  28. Liu, L., C. Dahlgren, H. Elwing, and H. Lundqvist. 1996. A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils. J. Immunol. Methods 192:173-178.

    Google Scholar 

  29. Dahlgren, C., and A. Karlsson. 1999. Respiratory burst in human neutrophils. J. Immunol. Methods 232:3-14.

    Google Scholar 

  30. Lundqvist, H., and C. Dahlgren. 1996. Isoluminol-enhanced chemiluminescence: A sensitive method to study the release of superoxide anion from human neutrophils. Free Radical Biology and Medicine 20:785-792.

    Google Scholar 

  31. Quinn, M. T., C. A. Parkos, and A. J. Jesaitis. 1989. The lateral organization of components of the membrane skeleton and superoxide generation in the plasma membrane of stimulated human neutrophils. Biochim. Biophys. Acta 987:83-94.

    Google Scholar 

  32. Kjeldsen, L., H. Sengelov, and N. Borregaard. 1999. Subcellular Swain, Siemsen, Nelson, Sipes, Hanson, and Quinn 58 fractionation of human neutrophils on Percoll density gradients. J. Immunol. Methods 232:131-143.

    Google Scholar 

  33. Swain, S. D., K. L. Jutila, and M. T. Quinn. 2000. Cell-surface lactoferrin as a marker for bovine neutrophil degranulation: Development of a monoclonal antibody and flow cytometric assay. Am. J. Vet. Rev. 61:29-37.

    Google Scholar 

  34. Swain, S. D., P. L. Bunger, K. M. Sipes, L. K. Nelson, K. L. Jutila, S. M. Boylan, and M. T. Quinn. 1998. Platelet-activating factor induces a concentration-dependent spectrum of functional responses in bovine neutrophils. J. Leukoc. Biol. 64:817-827.

    Google Scholar 

  35. DeLeo, F. R., K. V. Ulman, A. R. Davis, K. L. Jutila, and M. T. Quinn. 1996. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J. Biol. Chem. 271:17013-17020.

    Google Scholar 

  36. Zalavary, S., and T. Bengtsson. 1998. Modulation of the chemotactic peptide-and immunoglobulin G-triggered respiratory burst in human neutrophils by exogenous and endogenous adenosine. Eur. J. Pharmacol. 354:215-225.

    Google Scholar 

  37. Zipfel, M., T. C. Carmine, C. Gerber, and G. Bruchelt. 1997. Evidence for the activation of myeloperoxidase by f-Meth-Leu-Phe prior to its release from neutrophil granulocytes. Biochem. Biophys. Res. Commun. 232:209-212.

    Google Scholar 

  38. Sengelov, H., L. Kjeldsen, W. Kroeze, M. Berger, and N. Borregaard. 1994. Secretory vesicles are the intracellular reservoir of complement receptor 1 in human neutrophils. J. Immunol. 153:804-810.

    Google Scholar 

  39. Martens, A., G. J. M. Eppink, A. J. J. Woittiez, H. Eidhof, and L. F. M. H. DeLeij. 1999. Neutrophil function capacity to express CD10 is decreased in patients with septic shock. Crit. Care Med. 27:549-553.

    Google Scholar 

  40. Afeltra, A., D. Caccavo, G. M. Ferri, M. A. Addessi, F. G. DeRosa, A. Amoroso, and L. Bonomo. 1997. Expression of lactoferrin on human granulocytes: Analysis with polyclonal and monoclonal antibodies. Clin. Exp. Immunol. 109:279-285.

    Google Scholar 

  41. Sengelov, H., L. Kjeldsen, M. S. Diamond, T. A. Springer, and N. Borregaard. 1993. Subcellular localization and dynamics of Mac-1 (?m?2) in human neutrophils. J. Clin. Invest. 92:1467-1476.

    Google Scholar 

  42. DeLeo, F. R., J. Renee, S. McCormick, M. Nakamura, M. Apicella, J. P. Weiss, and W. M. Nauseef. 1998. Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J. Clin. Invest. 101:455-463.

    Google Scholar 

  43. Akard, L. P., D. English, and T. G. Gabig. 1988. Rapid deactivation of NADPH oxidase in neutrophils: Continuous replacement by newly activated enzyme sustains the respiratory burst. Blood 72:322-327.

    Google Scholar 

  44. Quinn, M. T., T. Evans, L. R. Loetterle, A. J. Jesaitis, and G. M. Bokoch. 1993. Translocation of Rac correlates with NADPH oxidase activation: Evidence for equimolar translocation of oxidase components. J. Biol. Chem. 268:20983-20987.

    Google Scholar 

  45. Jesaitis, A. J., E. S. Buescher, D. Harrison, M. T. Quinn, C. A. Parkos, S. Livesey, and J. Linner. 1990. Ultrastructural localization of cytochrome b in the membranes of resting and phagocytosing human granulocytes. J. Clin. Invest. 85:821-835.

    Google Scholar 

  46. Ohno, Y., B. E. Seligmann, and J. I. Gallin. 1985. Cytochrome b translocation to human neutrophil plasma membranes and superoxide release. Differential effects of N-formymethionylleucylphenylalanine, phorbol myristate acetate, and A23187. J. Biol. Chem. 201:2409-2414.

    Google Scholar 

  47. Vaissiere, C., V. LeCabec, and I. Maridonneau-Parini. 1999. NADPH oxidase is functionally assembled in specific granules during activation of human neutrophils. J. Leukoc. Biol. 65:629-634.

    Google Scholar 

  48. Borregaard, N., J. M. Heiple, E. R. Simons, and R. A. Clark. 1983. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidaz oxidase: Translocation during activation. J. Cell. Biol. 97:52-61.

    Google Scholar 

  49. Borregaard, N., K. Lollike, L. Kjeldsen, H. Sengelov, L. Bastholm, M. H. Nielsen, and D. F. Bainton. 1993. Human neutrophil granules and secretory vesicles. Eur. J. Haematol. 51:187-198.

    Google Scholar 

  50. Borregaard, N., L. Kjeldsen, H. Sengelov, M. S. Diamond, T. A. Springer, H. C. Anderson, T. K. Kishimoto, and D. F. Bainton. 1994. Changes in subcellular localization and surface expression of L-selectin, alkaline phosphatase, and Mac-1 in human neutrophils during stimulation with inflammatory mediators. J. Leukoc. Biol. 56:80-87.

    Google Scholar 

  51. Chambers, J. D., S. I. Simon, E. M. Berger, L. A. Sklar, and K. E. Arfors. 1993. Endocytosis of ? 2 integrins by stimulated human neutrophils analyzed by flow cytometry. J. Leukoc. Biol. 53:462-469.

    Google Scholar 

  52. Berger, M., E. M. Wetzler, E. Welter, J. R. Turner, and A. M. Tartakoff.Intracellular sites for storage and recycling of C3b receptors in human neutrophils. 1991. Proc. Natl. Acad. Sci. USA 88:3019-3023.

    Google Scholar 

  53. Kobayashi, T., and J. M. Robinson. 1991. A novel intracellular compartment with unusual secretory properties in human neutrophils. J. Cell Biol. 113:743-756.

    Google Scholar 

  54. Fernández-Segura, E., J. M. García, and A. Campos. 1995. Dynamic reorganization of the alkaline phosphatase-containing compartment during chemotactic peptide stimulation of human neutrophils imaged by backscattered electrons. Histochem. Cell Biol. 104:175-181.

    Google Scholar 

  55. Kobayashi, T., J. M. Robinson, and H. Seguchi. 1998. Identification of intracellular sites of superoxide production in stimulated neutrophils. J. Cell Sci. 111:81-91.

    Google Scholar 

  56. Kobayashi, T., and H. Seguchi. 1999. Novel insight into current models of NADPH oxidase regulation, assembly and localization in human polymorphonuclear leukocytes. Histol. Histopathol. 14:1295-1308.

    Google Scholar 

  57. Sengelov, H. and N. Borregaard. 1999. Free-flow electrophoresis in subcellular fractionation of human neutrophils. J. Immunol. Methods 232:145-152.

    Google Scholar 

  58. Borregaard, N., L. Christensen, O. W. Bjerrum, H. S. Birgens, and I. Clemmensen. 1990. Identification of a highly mobilizable subset of human neutrophil intracellular vesicles that contains tetranectin and latent alkaline phosphatase. J. Clin. Invest. 85:408-416.

    Google Scholar 

  59. Vita, F., M. R. Soranzo, V. Borelli, P. Bertoncin, and G. Zabucchi. 1996. Subcellular localization of the small GTPase Rab5a in resting and stimulated human neutrophils. Exp. Cell Res. 227:367-373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Quinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, S.D., Siemsen, D.W., Nelson, L.K. et al. Inhibition of the Neutrophil NADPH Oxidase by Adenosine Is Associated with Increased Movement of Flavocytochrome b Between Subcellular Fractions. Inflammation 27, 45–58 (2003). https://doi.org/10.1023/A:1022639228723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022639228723

Navigation