Skip to main content
Log in

Potentiometric Determination of the First Hydrolysis Constant of Gallium(III) in NaCl Solution to 100°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The hydrolysis equilibrum of gallium (III) solutions in aqueous 1 mol-kg−1 NaCl over a range of low pH was measured potentiometrically with a hydrogen ion concentration cell at temperatures from 25 to 100°C at 25°C intervals. Potentials at temperatures above 100°C increased gradually because of further hydrolysis of the gallium(III) ion, followed by precipitation. The results were treated with a nonlinear least-squares computer program to determine the equilibrium constants for gallium(III)–hydroxo complexes using the Debye–Hückel equation. The log K (mol-kg−1) values of the first hydrolysis constant for the reaction, Ga3+ + H2O ⇆ GaOH2+ + H+ were −2.85 ± 0.03 at 25°C, −2.36 ± 0.03 at 50°C, −1.98 ± 0.01 at 75°C, and −1.45 ± 0.02 at 100°C. The computed standard enthalpy and entropy changes for the hydrolysis reaction are presented over the range of experimental temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Masuda, Kagaku Souti 30, 95 (1988).

    Google Scholar 

  2. C. F. Baes and R. E. Mesmer, Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  3. T. Moeller and G. L. King, J. Phys. Chem. 54, 999 (1950).

    Google Scholar 

  4. J. K. Ruff and S. Y. Tyree, J. Am. Chem. Soc. 80, 5654 (1958).

    Google Scholar 

  5. J. Haladjian and G. Carpèni, J. Chim. Phys. 64, 1338 (1967).

    Google Scholar 

  6. E. A. Biryuk and V. A. Nazarenko, Z. Neorg. Khim. 18, 2964 (1973).

    Google Scholar 

  7. A. P. Savostin, Z. Neorg. Khim. 18, 2565 (1965).

    Google Scholar 

  8. I. P. Alimarin, Sh. A. Khamid, and I. V. Puzdrenkova, Z. Neorg. Khim. 10, 389 (1965).

    Google Scholar 

  9. V. A. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, Z. Neorg. Khim. 13, 1574 (1968).

    Google Scholar 

  10. P. Hemmes, L. D. Rich, D. L. Cole, and E. M. Eyring, J. Phys. Chem. 74, 2859 (1970).

    Google Scholar 

  11. P. L. Brown, J. Chem. Soc. Dalton Trans., p. 399 (1989).

  12. A. Campisi and P. A. Tregloan, Inorg. Chim. Acta 100, 251 (1985).

    Google Scholar 

  13. M. Pesavento, T. Soldi, and A. Profumo, Talanta 39, 943 (1992).

    Google Scholar 

  14. I. I. Diakonov, G. S. Pokrovski, P. Bénézeth, J. Schott, J.-L. Dandurand, and J. Escalier, Geochim. Cosmochim. Acta 61, 1333 (1997).

    Google Scholar 

  15. P. Bénézeth, I. I. Diakonov, G. S. Pokrovski, J.-L. Dandurand, J. Schott, and I. L. Khodakovsky, Geochim, Cosmochim, Acta 61, 1345 (1997).

    Google Scholar 

  16. G. S. Pokrovski, I. I. Diakonov, P. Bénézeth, V. M. Gurevich, K. S. Gavrichev, V. E. Gorbunov, J.-L. Dandurand, J. Schott, and I. L. Khodakovsky, Eur. J. Mineral. 9, 941 (1997).

    Google Scholar 

  17. J. C. Tanger and H. C. Helgeson, Am. J. Sci. 288, 19 (1988).

    Google Scholar 

  18. E. L. Shock and H. C. Helgeson, Geochim. Cosmochim. Acta 52, 2009 (1988).

    Google Scholar 

  19. H. Gamsjäger and P. Schindler, Helv. Chim. Acta 50, 2053 (1967).

    Google Scholar 

  20. S. M. Bradley, A. Kydd, and R. Yamdagni, J. Chem. Soc. Dalton Trans., p. 413 (1990).

  21. J. W. Akitt and J. M. Elders, J. Chem. Soc. Faraday Trans. 81, 1923 (1985).

    Google Scholar 

  22. Y. Matsushima and A. Okuwaki, Bull. Chem. Soc. Jpn. 61, 3343 (1988).

    Google Scholar 

  23. Y. Matsushima, A. Matsunaga, K. Sakai, and A. Okuwaki, Bull. Chem. Soc. Jpn. 61, 4259 (1988).

    Google Scholar 

  24. A. S. Quist and W. L. Marshall, J. Phys. Chem 69, 2984 (1965).

    Google Scholar 

  25. R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Butterworths, London, 1959).

    Google Scholar 

  26. H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, Am. J. Sci. 281, 1249 (1981).

    Google Scholar 

  27. M. Uematsu and E. U. Franck, J. Phys. Chem. Ref. Data 10, 1 (1981).

    Google Scholar 

  28. P. F. M. van Gaans, H. A. J. Oonk, and G. Somsen, J. Solution Chem. 19, 831 (1990).

    Google Scholar 

  29. P. F. M. van Gaans, Chem. Geol. 104, 139 (1993).

    Google Scholar 

  30. M. H. Mihailov, J. Inorg. Nucl. Chem. 36, 107 (1974).

    Google Scholar 

  31. K. A. Kraus, F. Nelson, and G. W. Smith, J. Phys. Chem. 58, 11 (1954).

    Google Scholar 

  32. K. A. Kraus and R. J. Raridon, J. Am. Chem. Soc. 82, 3271 (1960).

    Google Scholar 

  33. D. F. C. Morris and B. D. Andrews, Electrochimica Acta 12, 41 (1967).

    Google Scholar 

  34. C. F. Baes, Jr, and R. E. Mesmer, Am. J. Sci. 281, 935 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, M., Okuwaki, A. Potentiometric Determination of the First Hydrolysis Constant of Gallium(III) in NaCl Solution to 100°C. Journal of Solution Chemistry 27, 965–978 (1998). https://doi.org/10.1023/A:1022631803191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022631803191

Navigation