Skip to main content
Log in

Direct Peritectic Growth of c-Axis Textured YBa2Cu3O x on a Flexible Metallic Substrate

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Previous work in the development of YBa2Cu3O x (YBCO) superconducting wires and tapes has been focused on the deposition of YBCO on buffered metallic substrates. Although such an approach has proved successful in terms of achieving grain texturing and high transport current density, critical issues involving continuous processing of long-length conductors and stabilization of the superconductor have not yet been entirely settled. We have developed a novel process, the so-called direct peritectic growth (DPG), in which textured YBCO thick films have been successfully deposited directly onto a silver alloy substrate. No buffer layer is employed in the film deposition process. The textured YBCO grains have been obtained through peritectic solidification over a wide range of temperatures and times. The substrate materials have not demonstrated any observable reaction with the YBCO melt at the maximum processing temperature near 1010°C. The transport J c has reached a respectable value of 104 A/cm2 at 77 K and zero magnetic field. Based on the experimental results in this work, we show that the DPG method offers an effective alternative for the fabrication of long-length YBCO conductors. Also reported is a physical explanation of the texturing mechanism on the metal substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. H. Kes, Physica C 153–155, 1121 (1988).

    Google Scholar 

  2. L. J. Swartzendruber, A. Ritburd, D. L. Kaiser, F. W. Gayle, and L. H. Bennet, Phys. Rev. Lett. 64, 483 (1990).

    Google Scholar 

  3. U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, and J. Z. Liu, Appl. Phys. Lett. 57, 84 (1990).

    Google Scholar 

  4. K. E. Gray, Appl. Supercond. 2, 295 (1994).

    Google Scholar 

  5. D. H. Kim, K. E. Gray, R. T. Kampwirth, J. C. Smith, D. S. Richeson, T. J. Marks, J. H. Kang, J. Talvacchio, and M. Eddy, Physica C 177, 431 (1991).

    Google Scholar 

  6. E. M. Chudnovsky, Phys. Rev. Lett. 65, 3060 (1990).

    Google Scholar 

  7. M. Daeumling, J. M. Seuntjens, and D. C. Larbalestier, Nature 346, 332 (1990).

    Google Scholar 

  8. M. Hawley, I. D. Raystrick, J. G. Beery, and R. J. Houlton, Science 251, 1587 (1991).

    Google Scholar 

  9. C. Gerber, D. Anselmetti, J. G. Bednorz, J. Manhart, and D. G. Schlom, Nature 350, 279 (1991).

    Google Scholar 

  10. R. B. Stephens, Cryogenics 29, 399 (1989).

    Google Scholar 

  11. D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett. 61, 219 (1988).

    Google Scholar 

  12. S. E. Babcock, X. Y. Cai, D. L. Kaiser, and D. C. Larbalestier, Nature 347, 167 (1990).

    Google Scholar 

  13. Siu-Wai Chan, D. M. Hwang, R. Ramesh, S. M. Sampere, and L. Nazar, in Proc. High-T c Superconducting Thin Films: Processing, Characterization, and Applications, R. Stockbaur, ed. (AIP, New York, 1990), p. 172.

    Google Scholar 

  14. S. E. Babcock and D. C. Larbalestier, J. Mater. Res. 5, 919 (1990).

    Google Scholar 

  15. Q. Li, H. A. Hjuler, and T. Freltoft, Physica C 217, 360 (1993).

    Google Scholar 

  16. U. Balachandran, A. Iyer, P. Haldar, J. Hoehn, L. Motowidlo, and G. Galinski, Appl. Supercond. 2, 251 (1994).

    Google Scholar 

  17. H. Santhage, G. N. Riley, Jr., and W. L. Carter, J. Met. 43, 21 (1991).

    Google Scholar 

  18. R. D. Ray II and E. E. Hellstrom, Physica C 172, 227 (1993).

    Google Scholar 

  19. K. Heine, J. Tenbrink, and M. Thoener, Appl. Phys. Lett. 55, 2441 (1989).

    Google Scholar 

  20. D. Dietdrich, B. Ullmann, H. Freyhardt, J. Kase, H. Kumakura, K. Togano, and H. Maeda, J. Appl. Phys. 29, 1100 (1990).

    Google Scholar 

  21. J. P. Singh, D. Shi, and D. Capone, Appl. Phys. Lett. 53, 237 (1988).

    Google Scholar 

  22. P. G. McGinn, W. Chen, N. Zhu, M. Lanagan, and U. Balachandran, Appl. Phys. Lett. 57, 1455 (1990).

    Google Scholar 

  23. R. L. Meng, C. Kinalidis, and Y. Y. Sun, Nature 345, 326 (1990).

    Google Scholar 

  24. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G. W. Kammlott, R. A. Fastnacht, and H. D. Keith, Appl. Phys. Lett. 52, 2074 (1988).

    Google Scholar 

  25. M. Murakami, M. Morita, and N. Koyama, Jpn. J. Appl. Phys. 28, L1125 (1989).

    Google Scholar 

  26. M. Murakami, M. Morita, K. Doi, and K. Miyamoto, Jpn. J. Appl. Phys. 28, 1189 (1989).

    Google Scholar 

  27. M. Murakami, M. Morita, K. Doi, K. Miyamoto, and H. Hamada, Jpn. J. Appl. Phys. 28, 399 (1989).

    Google Scholar 

  28. H. Fujimoto, M. Murakami, S. Gotoh, T. Oyama, Y. Shiohara, N. Koshizuka, and S. Tanaka, in Advances in Superconductivity II (Springer-Verlag, Tokyo, 1990), p. 85.

    Google Scholar 

  29. M. Murakami, Mod. Phys. Lett. 4, 163 (1990).

    Google Scholar 

  30. Z. Lian, Z. Pingxiang, J. Ping, W. Keguang, W. Jingrong, and W. Xiaozu, Supercond. Sci. Technol. 3, 490 (1990).

    Google Scholar 

  31. N. Ogawa, I. Hirabayashi, and S. Tanaka, Physica C 177, 101 (1991).

    Google Scholar 

  32. V. Selvamanickam, C. Partsinevelos, A. McGuire, and K. Salama, Appl. Phys. Lett. 60, 3313 (1992).

    Google Scholar 

  33. R. L. Meng, Y. Sun, P. Hor, and C. W. Chu, Physica C 179, 149 (1991).

    Google Scholar 

  34. D. Dube, B. Arsenault, C. Gelinas, and P. Lambert, Mater. Lett. 15, 1 (1992).

    Google Scholar 

  35. C. Varanasi and P. J. McGinn, Mater. Lett. 17, 205 (1993).

    Google Scholar 

  36. A. Goyal et al. Appl. Supercond. 4, 403 (1996).

    Google Scholar 

  37. M. Paranthaman et al., Proc. of the 9th Int. Symposium on Supercond., Sapporo, Hokkaido, Japan, Oct. 21–24, 1996.

  38. X. D. Wu et al., Appl. Phys. Lett. 65, 1961 (1994).

    Google Scholar 

  39. L. Langhorn, Y. J. Bi, and J. S. Abel, Physica C 271, 164 (1996).

    Google Scholar 

  40. A. R. Jones, D. A. Cardwell, N. J. C. Ingle, S. P. Ashworth, A. M. Campbell, N. McN. Alford, T. W. Button, F. Wellhofer, and J. S. Abel, J. Appl. Phys. 76, 1720 (1994).

    Google Scholar 

  41. J. P. Singh, D. Shi, and D. W. Capone, Appl. Phys. Lett. 53, 239 (1987).

    Google Scholar 

  42. Y. Yamada, J. Kawashima, Y. Niiori, and I. Hirabayashi, Appl. Supercond. 4, 49 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, D., Qu, D., Wen, X. et al. Direct Peritectic Growth of c-Axis Textured YBa2Cu3O x on a Flexible Metallic Substrate. Journal of Superconductivity 11, 575–580 (1998). https://doi.org/10.1023/A:1022631228308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022631228308

Navigation