Skip to main content
Log in

A Strong Approximation Theorem for Stochastic Recursive Algorithms

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The constant stepsize analog of Gelfand–Mitter type discrete-time stochastic recursive algorithms is shown to track an associated stochastic differential equation in the strong sense, i.e., with respect to an appropriate divergence measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gelfand, S. B., and Mitter, S. K., Recursive Stochastic Algorithms for Global Optimization in R N, SIAM Journal on Control and Optimization, Vol. 29, pp. 999–1018, 1991.

    Google Scholar 

  2. Gelfand, S. B., and Mitter, S. K., Metropolis-Type Annealing Algorithm for Global Optimization in R d, SIAM Journal on Control and Optimization, Vol. 31, pp. 111–131, 1993.

    Google Scholar 

  3. Borkar, V. S., Probability Theory: An Advanced Course, Springer Verlag, New York, New York, 1996.

    Google Scholar 

  4. Hirsch, M. W., Convergent Activation Dynamics in Continuous-Time Networks, Neural Networks, Vol. 2, pp. 331–349, 1989.

    Google Scholar 

  5. Liptser, R. S., and Shiryayev, A. N., Statistics of Random Processes, I: General Theory, Springer Verlag, New York, New York, 1977.

    Google Scholar 

  6. Bhattacharya, R. N., Asymptotic Behavior of Several Dimensional Diffusions, Stochastic Nonlinear Systems, Edited by L. Arnold and R. Lefever, Springer Verlag, Berlin, Germany, pp. 86–99, 1981.

    Google Scholar 

  7. Borkar, V. S., and Ghosh, M. K., Ergodic Control of Multidimensional Diffusions, II: Adaptive Control, Applied Mathematics and Optimization, Vol. 21, pp. 191–220, 1990.

    Google Scholar 

  8. Kushner, H. J., Approximation and Weak Convergence Methods for Random Processes, MIT Press, Cambridge, Massachusetts, 1984.

    Google Scholar 

  9. Meyn, S. P., and Tweedie, R. L., Markov Chains and Stochastic Stability, Springer Verlag, New York, New York, 1994.

    Google Scholar 

  10. Aronson, D. G., Bounds for the Fundamental Solution of a Parabolic Equation, Bulletin of the American Mathematical Society, Vol. 73, pp. 890–896, 1967.

  11. Borkar, V. S., A Remark on the Attainable Distributions of Controlled Diffusions, Stochastics, Vol. 18, pp. 17–23, 1986.

    Google Scholar 

  12. GŸongi, I., Mimicking the One-Dimensional Marginal Distribution of Processes Having an Itô Differential, Probability Theory and Related Fields, Vol. 71, pp. 501–516, 1986.

    Google Scholar 

  13. Ladyzenskaja, O. A., Solonnikov, V. A., and Ural'ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, Vol. 23, 1968.

    Google Scholar 

  14. Cover, T. M., and Thomas, J. A., Elements of Information Theory, John Wiley, New York, New York, 1991.

    Google Scholar 

  15. Deuschel, J. D., and Stroock, D., Large Deviations, Academic Press, New York, New York, 1989.

    Google Scholar 

  16. Pflug, G., Searching for the Best: Stochastic Approximation, Simulated Annealing, and Related Procedures, Identification, Adaptation, Learning, Edited by S. Bittanti and G. Picci, Springer Verlag, Berlin, Germany, pp. 514–549, 1996.

    Google Scholar 

  17. Gelfand, S. B., Personal Communication, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borkar, V.S., Mitter, S.K. A Strong Approximation Theorem for Stochastic Recursive Algorithms. Journal of Optimization Theory and Applications 100, 499–513 (1999). https://doi.org/10.1023/A:1022630321574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022630321574

Navigation