Skip to main content
Log in

Competitive Complexation of Lanthanide Cations by Xylitol and Nitrate Anion in Aqueous Solution: A Microcalorimetric Investigation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The apparent equilibrium constants and enthalpies of complexation of Nd3+, Sm3+, Eu3+, and Gd3+ by xylitol in aqueous solutions containing NaNO3 at an ionic strength of 2.0 mol-kg−1 have been determined by microcalorimetry at 25°C. Since nitrate anion weakly complexes the lanthanide cations, these values are analyzed in terms of competition between xylitol and NO -3 The method leads to the apparent equilibrium constants and enthalpies of complexation of the lanthanide cations by NO -3 at this particular ionic strength. Despite the difficulties encountered in characterizing rather weak associations, the results are, whenever comparison is possible, in good agreement with those obtained by direct microcalorimetry. The advantage of this competition method is that it can be used when the enthalpic effects are too weak and insufficiently concentration dependent for direct microcalorimetric determination. In the present case, it allows us to thermodynamically characterize the formation of SmNO 2+3 and EuNO 2+3 , processes we have not been able to study directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. A. Rard, Chem. Rev. 85, 555 (1985).

    Google Scholar 

  2. S. A. Wood, Chem. Geol. 82, 159 (1990).

    Google Scholar 

  3. F. J. Millero, Geochim. Cosmochim. Acta 56, 3123 (1992).

    Google Scholar 

  4. D. F. Peppard, G. W. Mason, and I. Hucher, J. Inorg. Nucl. Chem. 24, 881 (1962).

    Google Scholar 

  5. G. R. Choppin and W. F. Strazik, Inorg. Chem. 4, 1250 (1965).

    Google Scholar 

  6. N. A. Coward and R. W. Kiser, J. Phys. Chem. 70, 213 (1966).

    Google Scholar 

  7. Z. Kolarik, Coll. Czech. Chem. Commun. 32, 435 (1967).

    Google Scholar 

  8. G. R. Choppin, D. A. Kelly, and E. H. Ward, in Solvent Extraction Chemistry, D. Dyrssen, J. O. Liljenzin, and J. Rydberg, eds. (North-Holland, Amsterdam, 1967), p. 46.

  9. T. G. Spiro, A. Revesz, and J. Lee, J. Am. Chem. Soc. 90, 4000 (1968).

    Google Scholar 

  10. V. M. Barinov, L. G. Tebelev, A. G. Rykov, and G. N. Yakovlev, Russ. J. Inorg. Chem. 14, 207 (1969).

    Google Scholar 

  11. A. Anagnostopoulos and P. O. Sakellaridis, J. Inorg. Nucl. Chem. 32, 1740 (1970).

    Google Scholar 

  12. D. L. Nelson and D. E. Irish, J. Chem. Soc. Faraday Trans. 69(1), 156 (1973).

    Google Scholar 

  13. N. Moulin, H. Hussonnois, L. Brillard, and R. Guillaumont, J. Inorg. Nucl. Chem. 37, 2521 (1975).

    Google Scholar 

  14. J. G. C. Bunzli and J. R. Yersin, Inorg. Chem. 18, 605 (1979).

    Google Scholar 

  15. A. S. C. Cheung and D. E. Irish, J. Inorg. Nucl. Chem. 43, 1383 (1981).

    Google Scholar 

  16. P. J. Breen and W. D. Horrocks, Inorg. Chem. 22, 536 (1983).

    Google Scholar 

  17. Z. Chen and C. Detellier, J. Solution Chem. 21, 941 (1992).

    Google Scholar 

  18. C. Bonal, J. P. Morel, and N. Morel-Desrosiers, J. Chem. Soc. Faraday Trans. 92, 4957 (1996).

    Google Scholar 

  19. N. Morel-Desrosiers, C. Lhermet, and J. P. Morel, J. Chem. Soc. Faraday Trans. 89, 1223 (1993).

    Google Scholar 

  20. P. Rongère, N. Morel-Desrosiers, and J. P. Morel, J. Solution Chem. 23, 351 (1994).

    Google Scholar 

  21. P. Rongère, N. Morel-Desrosiers, and J. P. Morel, J. Chem. Soc. Faraday Trans. 91, 2771 (1995).

    Google Scholar 

  22. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, (Wiley, New York, 1976).

    Google Scholar 

  23. E. N. Rizkalla and G. R. Choppin, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, K. A. Gschneidner and L. Eyring, eds. (Elsevier, Amsterdam, 1991), Chap. 103.

    Google Scholar 

  24. P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  25. H. E. Wirth and F. N. Collier, J. Am. Chem. Soc. 72, 5292 (1950).

    Google Scholar 

  26. N. Morel-Desrosiers, C. Lhermet, and J. P. Morel, J. Chem. Soc. Faraday Trans. 87, 2173 (1991).

    Google Scholar 

  27. J. Suurkuusk and I. Wadsö, Chem. Scr. 20, 155 (1982).

    Google Scholar 

  28. C. Bonal, J. P. Morel, and N. Morel-Desrosiers, J. Chem. Soc. Faraday Trans. 94, 1431 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonal, C., Morel, JP. & Morel-Desrosiers, N. Competitive Complexation of Lanthanide Cations by Xylitol and Nitrate Anion in Aqueous Solution: A Microcalorimetric Investigation. Journal of Solution Chemistry 27, 361–372 (1998). https://doi.org/10.1023/A:1022627732324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022627732324

Navigation