Skip to main content
Log in

Herbivore-Induced Responses in Alfalfa (Medicago sativa)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The herbivore-induced response of alfalfa (Medicago sativa) was examined through assays with Spodoptera littoralislarvae and analyses of important secondary substances. In food preference experiments, larvae preferred young undamaged alfalfa plants over plants that had been damaged by feeding larvae 5 and 7 days earlier, while no difference in feeding preferences could be detected 1, 9, and 14 days after damage. This suggests a peak in the herbivore induced resistance of alfalfa approximately one week after initial damage. The induced resistance in young plants was also shown to be systemic, while older flowering plants failed to show increased resistance after defoliation. Larvae gained weight slower and had lower pupal mass when fed damaged alfalfa than when fed undamaged alfalfa. Levels of total saponins were increased in foliage of damaged alfalfa, and detailed analyses of specific saponin components revealed doubled concentrations of 3GlcA,28AraRhaXyl medicagenate (medicagenic acid bidesmoside) and 3GlcAGalRha soyasapogenol B (soyasaponin I). Levels of the flavonoid apigenin (as free aglycone) also were increased in herbivore damaged plants. The herbivore-induced response of alfalfa was significantly weaker than that of cotton: S. littoralis larvae given a choice of undamaged cotton and undamaged alfalfa preferred to feed on cotton, whereas preferences shifted towards alfalfa when plants were damaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adel, M. M., Sehnal, F., and Jurzysta, M. 2001. Effects of alfalfa saponins on the moth Spodoptera littoralis. J. Chem. Ecol. 26:1065–1078.

    Google Scholar 

  • Agrawal, A. A., Gorski, P. M., and Tallamy, D. W. 1999. Polymorphism in plant defense against herbivory: Constitutive and induced defense in Cucumis sativus. J. Chem. Ecol. 25:2285–2304.

    Google Scholar 

  • Alborn, H. T., Röse, U. S. R., and McAuslane, H. J. 1996. Systemic induction of feeding deterrents in cotton plants by feeding of Spodoptera spp. Larvae. J. Chem. Ecol. 22:919–932.

    Google Scholar 

  • Anderson, P. and Alborn, H. 1999. Effects on oviposition behaviour and larval development of Spodoptera littoralis by herbivore-induced changes in cotton plants. Entomol. Exp. Appl. 92:45–51.

    Google Scholar 

  • Baldwin, I. T. 1989. Mechanism of damaged-induced alkaloid production in wild tobacco. J. Chem. Ecol. 15:1661–1680.

    Google Scholar 

  • Baldwin, I. T. and Schmelz, E. A. 1996. Immunological memory in the induced accumulation of nicotine in wild tobacco. Ecology 77:236–246.

    Google Scholar 

  • Bazzaz, F. A., Chiarello, N. R., Coley, P. D., and Pitelka, L. F. 1987. Allocating resources to reproduction and defense. BioSci. 37:58–67.

    Google Scholar 

  • Blodgett, S. L. and Higgins, R. A. 1990. Blister beetles (Coleoptera: Meloidae) in Kansas alfalfa: influence of plant phenology and proximity to field edge. J. Econ. Entomol. 83:1042–1048.

    Google Scholar 

  • Brown, E. S. and Dewhurst, C. F. 1975. The genus Spodoptera (Lepidoptera: Noctuidae) in Africa and Near East. Bull. Entomol. Res. 65:221–262.

    Google Scholar 

  • Bryant, J. P., Heitkonig, I., Kuropat, P., and Owen-Smith, N. 1991. Effects of severe defoliation on the long-term resistance to insect attack and on leaf chemistry in six woody species of the southern African savanna. Am. Nat. 137:50–63.

    Google Scholar 

  • Buffard, D., Esnault, R., and Kondorosi, A. 1996. Role of plant defense in alfalfa during symbiosis. World J. Microbiol. Biotechnol. 12:175–188.

    Google Scholar 

  • Classen, D., Nozzolillo, C., and Small, E. 1982. A phenolic–taxometric study of Medicago (Leguminosae). Can. J. Bot. 60:2477–2495.

    Google Scholar 

  • Coley, P. D., Bryant, J. P., and Chapin, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230:895–899.

    Google Scholar 

  • Croxford, A. C., Edwards, P. J., and Wratten, S. D. 1989. Temporal and spatial variation in palatability of soybean and cotton leaves following wounding. Oecologia 79:520–525.

    Google Scholar 

  • Dreyer, D. L. and Jones, K. C. 1981. Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: aphid feeding deterrents in wheat. Phytochemistry 20:2489–2493.

    Google Scholar 

  • Edwards, P. J., Wratten, S. D., and Parker, E. A. 1992. The ecological significance of rapid wound-induced changes in grazing and plant competition. Oecologia 91:266–272.

    Google Scholar 

  • Harborne, J. B. 1993. Introduction to Ecological Biochemistry. Academic Press, San Diego, California.

    Google Scholar 

  • Harvell, C. D. 1990. The ecology and evolution of inducible defense. Q. Rev. Biol. 65:323–340.

    Google Scholar 

  • Haukioja, E. and Niemelä, P. 1979. Birch leaves as a resource for herbivores: Seasonal occurrence of increased resistance in foliage after mechanical damage of adjacent leaves. Oecologia 39:151–159.

    Google Scholar 

  • Herms, D. A. and Mattson, W. J. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol 67:283–355.

    Google Scholar 

  • Hernandez, T., Hernandez, A., and Martinez, C. 1991. Polyphenols in alfalfa leaf concentrations. J. Agric. Food Chem. 39:1120–1122.

    Google Scholar 

  • Hinks, C. F. and Byers, J. R. 1976. Biosystematics of the genus Euoxa (Lepidoptera: Noctuidae). V. Rearing procedures and life cycles of 36 species. Can. Entomol. 108:1345–1357.

    Google Scholar 

  • Hunter, M. D. 1987. Opposing effects of spring defoliation on late season oak caterpillars. Ecol. Entomol. 12:355–357.

    Google Scholar 

  • Järemo, J. 1999. Plant inducible responses to damage: evolution and ecological implications. PhD dissertation, Lund University, Sweden.

    Google Scholar 

  • Jones, W. T., Broadhurst, R. B., and Lyttleton, J. W. 1976. The condensed tannins of pasture legume species. Phytochemistry 15:1407–1409.

    Google Scholar 

  • Kain, W. M. and Biggs, D. R. 1980. Effect of pea aphid and bluegreen lucerne aphid (Acyrthosiphon spp.) on coumesterol levels in herbage of lucerne (Medicago sativa), N. Z. J. Agric. Res. 23:563–566.

    Google Scholar 

  • Kapulnik, Y., Volpin, H., Itzhaki, H., Ganon, D., Galili, S., David, R., Shaul, O., Chet, I., and Okon, Y. 1996. Suppression of defense response in mycorrhizal alfalfa and tobacco roots. New Phytol. 133:59–64.

    Google Scholar 

  • Karban, R. 1985. Resistance against spider mites in cotton induced by mechanical abrasion. Entomol. Exp. Appl. 37:137–141.

    Google Scholar 

  • Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Karban, R. and Myers, J. H. 1989. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 20:331–348.

    Google Scholar 

  • Massiot, G., Lavaud, C., Besson, V., Le Men-Oliver, L., and Van Binst, G. 1991. Saponins from aerial parts of alfalfa (Medicago sativa). J. Agric. Food Chem. 39:78–82.

    Google Scholar 

  • McAuslane, H. J. and Alborn, H. T. 1998. Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. J. Chem. Ecol. 24:399–416.

    Google Scholar 

  • McAuslane, H. J. and Alborn, H. T. 2000. Influence of previous herbivory on behavior and development of Spodoptera exigua larvae on glanded and glandless cotton. Entomol. Exp. Appl. 97:283–291.

    Google Scholar 

  • McAuslane, H. J., Alborn, H. T., and Toth, J. P. 1997. Systemic induction of terpenoid aldehydes in cotton pigment glands by feeding of larval Spodoptera exigua. J. Chem. Ecol. 23:2861–2879.

    Google Scholar 

  • Nielsen, G. R., Fuentes, C., Quebedeaux, B., Wang, Z., and Lamp, W. O. 1999. Alfalfa physiological response to potato leafhopper injury depends on leafhopper and alfalfa developmental stage. Entomol. Exp. Appl. 90:247–255.

    Google Scholar 

  • Nowacka, J. and Oleszek, W. 1994. Determination of alfalfa (Medicago sativa) saponins by high-performance liquid chromatography. J. Agric. Food Chem. 42:727–730.

    Google Scholar 

  • Nozzolillo, C., Arnason, J. T., Campos, F., Donskov, N., and Jurzysta, M. 1997. Alfalfa leaf saponins and insect resistance. J. Chem. Ecol. 23:995–1002.

    Google Scholar 

  • Oleszek, W. 1999. Allelopathic significance of plant saponins, pp. 167–178. in F. A. Macias, J. C. G. Galindo, J. M. G. Molinillo, and H. G. Cutler (Eds.). Recent Advances in Allelopathy, Vol. I, A Science for the Future. Servicio de Publicaciones–Universidad de Cadiz, Cadiz, Spain.

    Google Scholar 

  • Oleszek, W. 2000. Alfalfa saponins: chemistry and application, pp. 167–188, in W. R. Bidlack, S. T. Omaye, M. S. Meskin, and D. K. Topham (Eds.). Phytochemicals in Bioactive Agents. Technomic Publishing Co., Basel, Switzerland.

    Google Scholar 

  • Oleszek, W., Price, K. R., Colquhoun, I. J., Jurzysta, M., Ploszynski, M., and Fenwick, G. R. 1990. Isolation and identification of alfalfa root saponins: their activity in relation to a fungal bioassay. J. Agric. Food Chem. 38:1810–1817.

    Google Scholar 

  • Oleszek, W., Jurzysta, M., Ploszynski, M., Colquhoun, I. J., Price, K. R., and Fenwick, G. R. 1992. Zahnic acid tridesmoside and other dominating saponins from alfalfa (Medicago sativa L.) aerial parts. J. Agric. Food. Chem. 40:191–196.

    Google Scholar 

  • Oleszek, W., Hoagland, R. E., and Zablotovicz, R. M. 1999. Ecological significance of plant saponins, pp. 451–465, in Inderjit, K. M. M. Dakshini and C. L. Foy (Eds.). Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC Press, New York.

    Google Scholar 

  • Pacala, S. W. and Crawley, M. J. 1992. Herbivores and plant diversity. Am. Nat. 140:243–260.

    Google Scholar 

  • Perevolotsky, A. 1994. Tannins in Mediterranean woodland species: lack of response to browsing and thinning. Oikos 71:333–340.

    Google Scholar 

  • Petersen, R. K. D., Danielson, S. D., and Higley, L. G. 1992. Photosynthetic response of alfalfa to actual and simulated alfalfa weevil (Coleoptera: Curculionidae) injury. Environ. Entomol. 21:501–507.

    Google Scholar 

  • Rossiter, M., Schultz, J. C., and Baldwin, I. T. 1988. Relationships between defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69:267–277.

    Google Scholar 

  • Schultz, J. C. and Baldwin, I. T. 1982. Oak quality declines in response to defoliation by gypsy moth larvae. Science 217:149–150.

    Google Scholar 

  • Simmonds, M. S. J. 2001. Importance of flavonoids in insect–plant interactions: feeding and oviposition. Phytochemistry 56:245–252.

    Google Scholar 

  • Small, E. 1996. Adaptations to herbivory in alfalfa (Medicago sativa). Can. J. Bot. 74:807–822.

    Google Scholar 

  • Spss Inc. 1999. SPSS base 9.0 users guide. SPSS Inc., Chicago, Illinois.

    Google Scholar 

  • Stochmal, A. and Oleszek, W. 2001. Acylated flavonoid glucuronides from alfalfa (Medicago sativa) aerial parts, pp. 61–64, in Biologically-Active Phytochemicals in Food. W. Pfannhauser, G. R. Fenwick, and S. Khokhar (Eds.). The Royal Society of Chemistry, Cambridge, United Kingdom.

    Google Scholar 

  • Stochmal, A., Piacente, S., Pizza, C., De Riccardis, F., Leitz, R., and Oleszek, W. 2001a. Alfalfa (Medicago sativa) flavonoids. 1. Apigenin and luteolin glycosides from aerial parts. J. Agric. Food. Chem. 49:753–758.

    Google Scholar 

  • Stochmal, A., Simonet, A. M., Macias, F. A., and Oleszek, W. 2001b. Alfalfa (Medicago sativa L.) flavonoids. 2. Tricin and chrysoeriol glycosides from aerial parts. J. Agric. Food Chem. 49:5310–5314.

    Google Scholar 

  • Tang, M. and Smith, C. J. 2001. Elicitor induced defense responses in Medicago sativa. New Phytol. 149:401–418.

    Google Scholar 

  • Underwood, N. C. 1998. The timing of induced resistance and induced susceptibility in the soybean–Mexican bean beetle system. Oecologia 114:376–381.

    Google Scholar 

  • Wolfson, J. L. and Murdock, L. L. 1990. Growth of Manduca sexta on wounded tomato plants: role of induced proteinase inhibitors. Entomol. Exp. Appl. 54:257–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jep Agrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrell, J., Oleszek, W., Stochmal, A. et al. Herbivore-Induced Responses in Alfalfa (Medicago sativa). J Chem Ecol 29, 303–320 (2003). https://doi.org/10.1023/A:1022625810395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022625810395

Navigation