Skip to main content
Log in

Ternary Solution Mutual Diffusion Coefficients and Densities of Aqueous Mixtures of Sucrose with NaCl and Sucrose with KCl at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ternary solution isothermal mutual diffusion coefficients (interdiffusion coefficients) have been measured for aqueous mixtures of 0.250 mol-dm−3 sucrose (component 1) with 0.5 and 1.0 mol-dm−3 NaCl or with 0.5 and 1.0 mol-dm−3 KCl (salt = component 2) at 25.00°C using Rayleigh interferometry with computerized data acquisition. Densities were also measured. The volume-fixed diffusion coefficients (D ij)V show the following characteristics. At all compositions (D 21)V is much larger than (D 12)V and (D 21)V is a fairly significant fraction (33 to 68%) of (D 11)V. In addition, (D 12)V is slightly larger for mixtures containing NaCl than for those containing KCl at the same concentration, whereas (D 21)V is significantly larger for mixtures containing KCl. Values of (D 11)V are slightly larger for solutions containing KCl than for solutions containing NaCl. The observed trends imply that (D 21)V will probably exceed (D 11)V in both mixtures if concentrations of NaCl or of KCl are increased much further while maintaining the sucrose concentration at 0.250 mol-dm−3. Finally, the solvent-fixed cross-term diffusion coefficients (D 12)0 and (D 21)0 are significantly larger than their corresponding (D 12)V and D 21)V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. B. Tuwiner, Diffusion and Membrane Technology, American Chemical Society Monograph Series No. 156 (Reinhold, New York, 1962).

    Google Scholar 

  2. D. E. Anderson and D. L. Graf, Geochim. Cosmochim. Acta 42, 251 (1978).

    Google Scholar 

  3. R. A. Berner, in Kinetics of Geochemical Processes, in A. C. Lasaga and R. J. Kirkpatrick, eds. (Mineralogical Society of America, Washington, D. C., 1981), Chap. 3.

    Google Scholar 

  4. A. R. Felmy and J. H. Weare, Geochim. Cosmochim. Acta 55, 113 (1991).

    Google Scholar 

  5. C. I. Steefel and P. C. Lichtner, Geochim. Cosmochim. Acta 58, 3595 (1994).

    Google Scholar 

  6. E. J. Pessine, S. M. L. Agostinho, and H. C. Chagas, Can. J. Chem. 64, 523 (1986).

    Google Scholar 

  7. R. A. Noulty and D. G. Leaist, J. Solution Chem. 16, 813 (1987).

    Google Scholar 

  8. S. Umino and J. Newman, J. Electrochem. Soc. 140, 2217 (1993).

    Google Scholar 

  9. D. G. Miller, J. Phys. Chem. 70, 2639 (1966).

    Google Scholar 

  10. D. G. Miller, J. Phys. Chem. 71, 616 (1967).

    Google Scholar 

  11. D. G. Miller, J. Phys. Chem. 71, 3588 (1967).

    Google Scholar 

  12. E. C. Zhong and H. L. Friedman, J. Phys. Chem. 92, 1685 (1988).

    Google Scholar 

  13. H. G. Hertz, Ber. Bunsenges. Phys. Chem. 81, 656 (1977).

    Google Scholar 

  14. D. G. Miller, J. Phys. Chem. 85, 1137 (1981). Typographical errors in that report are summarized after Ref. 11 in Ref. 43.

    Google Scholar 

  15. P. Rizzo, J. G. Albright, and D. G. Miller, J. Chem. Eng. Data 42, 623 (1997).

    Google Scholar 

  16. J. A. Rard and D. G. Miller, J. Solution Chem. 12, 413 (1983).

    Google Scholar 

  17. J. A. Rard and D. G. Miller, J. Solution Chem. 8, 701 (1979).

    Google Scholar 

  18. J. A. Rard and D. G. Miller, J. Chem. Eng. Data 25, 211 (1980).

    Google Scholar 

  19. J. A. Rard and D. G. Miller, J. Chem. Soc. Faraday Trans. I 78, 887 (1982).

    Google Scholar 

  20. J. G. Albright, J. P. Mitchell, and D. G. Miller, J. Chem. Eng. Data 39, 195 (1994).

    Google Scholar 

  21. V. Daniel and J. G. Albright, J. Solution Chem. 20, 633 (1991).

    Google Scholar 

  22. V. Daniel and J. G. Albright, J. Chem. Eng. Data 40, 519 (1995).

    Google Scholar 

  23. J. G. Albright, R. Mathew, and D. G. Miller, J. Phys. Chem. 91, 210 (1987).

    Google Scholar 

  24. J. G. Albright and D. G. Miller, J. Phys. Chem. 76, 1853 (1972).

    Google Scholar 

  25. J. P. Mitchell, J. B. Butler, and J. G. Albright, J. Solution Chem. 21, 1115 (1992).

    Google Scholar 

  26. D. G. Miller, J. A. Rard, L. B. Eppstein, and J. G. Albright, J. Phys. Chem. 88, 5739 (1984).

    Google Scholar 

  27. J. A. Rard and D. G. Miller, J. Solution Chem. 14, 271 (1985).

    Google Scholar 

  28. J. A. Rard, D. G. Miller, and C. M. Lee, J. Chem. Soc. Faraday Trans. I 85, 3343 (1989).

    Google Scholar 

  29. J. A. Rard and D. G. Miller, Z. Phys. Chem. [N. F.] 142, 141 (1984).

    Google Scholar 

  30. J. A. Rard and D. G. Miller, J. Solution Chem. 8, 755 (1979).

    Google Scholar 

  31. D. G. Miller, J. A. Rard, J. G. Albright, M. E. Zeidler, and D. A. Palmer, unpublished data.

  32. D. G. Miller, J. A. Rard, L. B. Eppstein, and R. A. Robinson, J. Solution Chem. 9, 467 (1980).

    Google Scholar 

  33. J. G. Albright and D. G. Miller, J. Solution Chem. 4, 809 (1975).

    Google Scholar 

  34. J. G. Albright, R. Mathew, D. G. Miller, and J. A. Rard, J. Phys. Chem. 93, 2176 (1989).

    Google Scholar 

  35. L. Paduano, R. Mathew, J. G. Albright, D. G. Miller, and J. A. Rard, J. Phys. Chem. 93, 4366 (1989).

    Google Scholar 

  36. R. Mathew, L. Paduano, J. G. Albright, D. G. Miller, and J. A. Rard, J. Phys. Chem. 93, 4370 (1989).

    Google Scholar 

  37. R. Mathew, J. G. Albright, D. G. Miller, and J. A. Rard, J. Phys. Chem. 94, 6875 (1990).

    Google Scholar 

  38. D. G. Miller, J. G. Albright, R. Mathew, C. M. Lee, J. A. Rard, and L. B. Eppstein, J. Phys. Chem. 97, 3885 (1993).

    Google Scholar 

  39. D. G. Miller, A. W. Ting, J. A. Rard, and L. B. Eppstein, Geochim. Cosmochim. Acta 50, 2397 (1986).

    Google Scholar 

  40. J. A. Rard and D. G. Miller, J. Phys. Chem. 91, 4614 (1987).

    Google Scholar 

  41. J. A. Rard and D. G. Miller, J. Phys. Chem. 92, 6133 (1988).

    Google Scholar 

  42. D. G. Miller, R. Sartorio, L. Paduano, J. A. Rard, and J. G. Albright, J. Solution Chem. 25, 1185 (1996).

    Google Scholar 

  43. J. A. Rard, J. G. Albright, D. G. Miller, and M. E. Zeidler, J. Chem. Soc. Faraday Trans. 92, 4187 (1996).

    Google Scholar 

  44. J. G. Albright, S. M. Gillespie, J. A. Rard, and D. G. Miller, in preparation.

  45. P. J. Dunlop and L. J. Gosting, J. Phys. Chem. 63, 86 (1959).

    Google Scholar 

  46. P. J. Dunlop, J. Phys. Chem. 63, 612 (1959).

    Google Scholar 

  47. I. J. O'Donnell and L. J. Gosting, in The Structure of Electrolytic Solutions, W. J. Hamer, Ed. (J Wiley, New York, 1959), Chap. 11.

    Google Scholar 

  48. H. Kim, J. Chem. Eng. Data 27, 255 (1982).

    Google Scholar 

  49. D. G. Leaist, Electrochim. Acta 33, 795 (1988).

    Google Scholar 

  50. G. Reinfelds and L. J. Gosting, J. Phys. Chem. 68, 2464 (1964).

    Google Scholar 

  51. E. L. Cussler, Jr. and P. J. Dunlop, J. Phys. Chem. 70, 1880 (1966).

    Google Scholar 

  52. H. Kim and G. Reinfelds, J. Solution Chem. 2, 477 (1973).

    Google Scholar 

  53. V. Vitagliano, G. Borriello, C. Della Volpe, and O. Ortona, J. Solution Chem. 15, 811 (1986).

    Google Scholar 

  54. P. N. Henrion, Trans. Faraday Soc. 60, 75 (1964).

    Google Scholar 

  55. D. Kirstein, E. Kahrig, J. Erpenbeck, and G. Dreyer, Z. Phys. Chem. (Leipzig) 258, 289 (1977).

    Google Scholar 

  56. J. A. Rard, J. Chem. Thermodyn. 28, 83 (1996).

    Google Scholar 

  57. L. J. Gosting, H. Kim, M. A. Loewenstein, G. Reinfelds, and A. Revzin, Rev. Sci. Instrum. 44, 1602 (1973).

    Google Scholar 

  58. D. G. Miller and J. G. Albright, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Experimental Thermodynamics, Vol. III)(Blackwell Scientific Publications, Oxford, 1991), Sect. 9.1.6, ref. pp. 316–320.

    Google Scholar 

  59. P. J. Dunlop, J. Phys. Chem. 61, 994 (1957).

    Google Scholar 

  60. D. G. Miller, J. Phys. Chem. 92, 4222 (1988).

    Google Scholar 

  61. P. L. Vitagliano, C. Della Volpe, and V. Vitagliano, J. Solution Chem. 13, 549 (1984).

    Google Scholar 

  62. V. Vitagliano, G. Borriello, C. Della Volpe, and O. Ortona, J. Solution Chem. 15, 811 (1986).

    Google Scholar 

  63. D. G. Miller and V. Vitagliano, J. Phys. Chem. 90, 1706 (1986).

    Google Scholar 

  64. H. Fujita and L. J. Gosting, J. Phys. Chem. 64, 1256 (1960).

    Google Scholar 

  65. H. Fujita and L. J. Gosting, J. Am. Chem. Soc. 78, 1099 (1956).

    Google Scholar 

  66. J. A. Rard and D. G. Miller, J. Solution Chem. 19, 129 (1990).

    Google Scholar 

  67. D. G. Miller, L. Paduano, R. Sartorio, and J. G. Albright, J. Phys. Chem. 98, 13745 (1994).

    Google Scholar 

  68. P. J. Dunlop, J. Phys. Chem. 69, 4276 (1966).

    Google Scholar 

  69. D. G. Leaist, Ber. Bunsenges. Phys. Chem. 95, 117 (1991).

    Google Scholar 

  70. D. G. Miller, A. W. Ting, and J. A. Rard, J. Electrochem. Soc. 135, 896 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M.C., Albright, J.G., Rard, J.A. et al. Ternary Solution Mutual Diffusion Coefficients and Densities of Aqueous Mixtures of Sucrose with NaCl and Sucrose with KCl at 25°C. Journal of Solution Chemistry 27, 309–329 (1998). https://doi.org/10.1023/A:1022623631416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022623631416

Navigation