Skip to main content
Log in

The Influence of Interface Structures on the Conducting Properties of Zirconia (ZrO2)-Based Solid Electrolytes

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Zirconia-based materials are the solid electrolytes used as the principal component of solid oxide fuel cells. The present generation of fuel cell designs incorporates self-supporting thin films (80–100 μm) of the electrolyte on which various coatings of electrode are applied. The operating temperature of the cell is currently in the range 800–1000°C, and understanding the interface structures associated with these structurally complex components at these temperatures remains a constant challenge. Incremental changes in conductivity brought on by interface modifications can have a large influence on the viability of any particular system for commercial application. This review outlines the influence that a number of interface structures associated specifically with zirconia-based electrolytes have on the ionic conductivity. These include grain boundary structures, structures within grains, and the influence of additives. In addition, the effect of long-term anneals on the various interfaces is addressed. In each case, the combination of ionic conductivity measurements with detailed analytical electron microscopy has provided the clues as to how the various interface structures influence the physical properties of the solid electrolyte ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Q. Minh, J. Am. Ceram. Soc. 76(3), 563 (1993).

    Google Scholar 

  2. K. Eguchi, T. Setoguchi, T. Inoue, and H. Arai, Solid State Ion. 52, 165 (1992).

    Google Scholar 

  3. T. Ishhihara, H. Matsuda, and Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994).

    Google Scholar 

  4. T. Ishhihara, H. Matsuda, and Y. Takita, Solid State Ion. 79, 147 (1995).

    Google Scholar 

  5. M. Feng and J. B. Goodenough, Eur. J. Sol. Stat. Inorg. Chem. 31 663 (1994).

    Google Scholar 

  6. J. Drennan, V. Zelisko, F. T. Ciacchi, S. Rajendran, and S. P. S. Badwal, J. Mat. Chem. 7(1), 79 (1997).

    Google Scholar 

  7. J. A. Kilner and B. C. H. Steele, in Nonstoichiometric Oxides, O. T. Sorensen, ed. (Academic Press, London, 1981), p. 233.

    Google Scholar 

  8. A. S. Nowick, in Diffusion in Crystalline Solids (Academic Press, New York, 1984).

    Google Scholar 

  9. V. Butler, C. R. A. Catlow, B. E. F. Fender, and J. H. Harding, Solid State Ion. 8, 109 (1983).

    Google Scholar 

  10. C. R. A. Catlow, Mat. Sci. Eng. B12, 375 (1992).

    Google Scholar 

  11. K. C. Radford and R. J. Bratton, J. Mat. Sci. 14, 59 (1979).

    Google Scholar 

  12. M. J. Verkerk, A. J. A. Winnubst, and A. J. Burggraaf, J. Mat. Sci. 17, 3113 (1982).

    Google Scholar 

  13. K. Keizer, A. J. Burggraaf, and G. D. With, J. Mat. Sci. 17, 1095 (1982).

    Google Scholar 

  14. M. Feng and J. B. Goodenough, J. Am. Ceram. Soc. 77, 1954 (1994).

    Google Scholar 

  15. S. P. S. Badwal and J. Drennan, J. Mat. Sci. 24(1), 88 (1989).

    Google Scholar 

  16. J. Drennan and R. H. J. Hannink, J. Am. Ceram. Soc. 69, 541 (1986).

    Google Scholar 

  17. F. W. Poulsen, J. B. Bilde-Sorensen, K. Ghanbari-ahari, G. G. Knab, and M. Hartmanova, Solid State Ion. 40/41, 947 (1990).

    Google Scholar 

  18. E. P. Butler and J. Drennan, J. Am. Ceram. Soc. 65, 474 (1982).

    Google Scholar 

  19. S. J. Rajendran, J. Drennan, and S. P. S. Badwal, J. Mat. Sci. Lett. 6, 1431 (1987).

    Google Scholar 

  20. X. Guo, C.-Q. Tang, and R.-Z. Yuan, J. Eur. Ceram. Soc. 15, 25 (1995).

    Google Scholar 

  21. T. Ishii and Y. Tajima, J. Electrochem. Soc. 141(12), 3450 (1994).

    Google Scholar 

  22. M. Miyayama, H. Yanagida, and A. Asada, Am. Ceram. Soc. Bull. 64(4), 660 (1985).

    Google Scholar 

  23. M. Mori, M. Yoshikawa, H. Itoh, and T. Abe, J. Am. Ceram. Soc. 77(8), 2217 (1994).

    Google Scholar 

  24. B. Hudson and P. T. Moseley, J. Solid Stat. Chem. 19, 383 (1976).

    Google Scholar 

  25. B. Hudson and P. T. Moseley, The Analysis of Short-Range Order in Some Doped Fluorite Ceramics by Electron Diffraction (Institute of Physics Conference Series, 1978), Vol. 41(2), p. 104.

    Google Scholar 

  26. J. G. Allpress and H. J. Rossell, J. Solid Stat. Chem. 15, 68 (1975).

    Google Scholar 

  27. R. L. Withers, J. G. Thompson, and P. J. Barlow, J. Solid Stat. Chem. 94, 89 (1994).

    Google Scholar 

  28. H. Horiuchi, A. J. Schultz, P. C. W. Leung, and J. M. Williams, Acta Crystallogr. B40, 367 (1984).

    Google Scholar 

  29. S. Hull, Solid State Ion. 28–30, 488 (1988).

    Google Scholar 

  30. F. T. Ciacchi and S. P. S. Badwal, J. Eur. Ceram. Soc. 7, 197 (1991).

    Google Scholar 

  31. T. S. Sheu, T.-Y. Tien, and I.-W. Chen, J. Am. Ceram. Soc. 75(5), 1108 (1992).

    Google Scholar 

  32. T. Noma, M. Yoshimura, S. Somiya, M. Kato, M. S. Yanagisawa, and H. Seto, J. Mat. Sci. 23, 2689 (1988).

    Google Scholar 

  33. M. Yashima, N. Ishizawa, and M. Yoshimura, J. Am. Ceram. Soc. 76(3), 641 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drennan, J. The Influence of Interface Structures on the Conducting Properties of Zirconia (ZrO2)-Based Solid Electrolytes. Journal of Materials Synthesis and Processing 6, 181–189 (1998). https://doi.org/10.1023/A:1022621603484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022621603484

Navigation