Abstract
A Taylor dispersion tube has been used to measure mutual diffusion in aqueous solutions of glycine hydrochloride at 25°C and concentrations from 0.0005 to 0.5 M. Analysis of the dispersion profiles shows that the diffusion of glycine hydrochloride (GlyHCl) produces a subtantial additional flow of hydrochloric acid that is liberated by the dissociation: GlyH+ + Cl- ⇌ Gly + H+ + Cl-. Diffusion in this system is, therefore, a ternary process described by the equations J 1(GlyHCl) = − D 11∇C 1 − D 12∇C 2 and J 2(HCl) = −D 21∇C 1 − D 22∇C 2 for the coupled fluxes of total glycine hydrochloride (1) and hydrochloric acid (2) components. The ratio D 21/D 11 of measured diffusion coefficients indicates that up to two moles of HCl are cotransported per mole of GlyHCl. Although protonated glycine diffuses with relatively mobile Cl− counterions, the main diffusion coefficient of glycine hydrochloride, D 11, is lower than or nearly identical to the diffusion coefficient of aqueous glycine. A model for the diffusion of protonated solutes is developed to interpret this result and the large coupled flows of HCl. Diffusion coefficients are also reported for the aqueous hydrochlorides of 3- and 4-aminobenzoic acids.
Similar content being viewed by others
REFERENCES
Solubilities of Inorganic and Organic Compounds, Vol 1, (Pergamon, New York, 1963).
M. S. Lyons and J. V. Thomas, J. Am. Chem. Soc. 72, 4506 (1950).
P. J. Dunlop, J. Am. Chem. Soc. 77, 2994 (1955).
L. A. Woolf, D. G. Miller, and L. J. Gosting, J. Am. Chem. Soc. 84, 317 (1962).
H. D. Ellerton, G. Reinfelds, D. E. Mulcahy, and P. J. Dunlop, J. Phys. Chem. 68, 403 (1955).
J. D. Celis and R. Bravo, eds., Two-Dimensional Electrophoresis of Proteins, (Academic Press, Orlando, Florida, 1984).
P. G. Righetti, J. Chromatog. 516, 3 (1990).
R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn. (Academic Press: New York, 1959), p. 350.
K. Winkelblech, Z. Phys. Chem. 36, 546 (1901).
D. G. Leaist, J. Chem. Soc. Faraday Trans. I, 78, 3069 (1982).
E. J. King, J. Am. Chem. Soc. 73, 155 (1951).
B. B. Owen, J. Am. Chem. Soc. 56, 24 (1934).
Z. Deng and D. G. Leaist, Can. J. Chem. 69, 1548 (1991).
D. G. Leaist. J. Chem. Soc. Faraday Trans. 76, 597 (1991).
C. Erkey and A. Akgerman, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell, London, 1991), p. 251.
J. A. Harpst and P. A. Lyons, J. Phys. Chem. 69, 2333 (1965).
P. Rizzo, J. G. Albright, and D. G. Miller, J. Chem. Eng. Data 42, 623 (1997).
J. S. Newman, Electrochemical Systems (Prentice Hall, Englewood Cliffs, New Jersey, 1973).
L. Hao and D. G. Leaist, J. Chem. Soc. Faraday Trans. 89, 2775 (1993).
E. A. Guggenheim, Thermodynamics, 3rd edn. (North-Holland, Amsterdam, 1957), p. 356.
D. G. Leaist, Ber. Bunsenges. Phys. Chem. 89, 786 (1985).
R. A. Robinson and A. I. Biggs, Aust. J. Chem. 10, 128 (1957).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lu, R., Leaist, D.G. Comparison of the Diffusion of Aqueous Glycine Hydrochloride and Aqueous Glycine. Journal of Solution Chemistry 27, 285–297 (1998). https://doi.org/10.1023/A:1022619430507
Issue Date:
DOI: https://doi.org/10.1023/A:1022619430507