Skip to main content
Log in

Comparison of the Diffusion of Aqueous Glycine Hydrochloride and Aqueous Glycine

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A Taylor dispersion tube has been used to measure mutual diffusion in aqueous solutions of glycine hydrochloride at 25°C and concentrations from 0.0005 to 0.5 M. Analysis of the dispersion profiles shows that the diffusion of glycine hydrochloride (GlyHCl) produces a subtantial additional flow of hydrochloric acid that is liberated by the dissociation: GlyH+ + Cl- ⇌ Gly + H+ + Cl-. Diffusion in this system is, therefore, a ternary process described by the equations J 1(GlyHCl) = − D 11C 1D 12C 2 and J 2(HCl) = −D 21C 1D 22C 2 for the coupled fluxes of total glycine hydrochloride (1) and hydrochloric acid (2) components. The ratio D 21/D 11 of measured diffusion coefficients indicates that up to two moles of HCl are cotransported per mole of GlyHCl. Although protonated glycine diffuses with relatively mobile Cl counterions, the main diffusion coefficient of glycine hydrochloride, D 11, is lower than or nearly identical to the diffusion coefficient of aqueous glycine. A model for the diffusion of protonated solutes is developed to interpret this result and the large coupled flows of HCl. Diffusion coefficients are also reported for the aqueous hydrochlorides of 3- and 4-aminobenzoic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Solubilities of Inorganic and Organic Compounds, Vol 1, (Pergamon, New York, 1963).

  2. M. S. Lyons and J. V. Thomas, J. Am. Chem. Soc. 72, 4506 (1950).

    Google Scholar 

  3. P. J. Dunlop, J. Am. Chem. Soc. 77, 2994 (1955).

    Google Scholar 

  4. L. A. Woolf, D. G. Miller, and L. J. Gosting, J. Am. Chem. Soc. 84, 317 (1962).

    Google Scholar 

  5. H. D. Ellerton, G. Reinfelds, D. E. Mulcahy, and P. J. Dunlop, J. Phys. Chem. 68, 403 (1955).

    Google Scholar 

  6. J. D. Celis and R. Bravo, eds., Two-Dimensional Electrophoresis of Proteins, (Academic Press, Orlando, Florida, 1984).

    Google Scholar 

  7. P. G. Righetti, J. Chromatog. 516, 3 (1990).

    Google Scholar 

  8. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn. (Academic Press: New York, 1959), p. 350.

    Google Scholar 

  9. K. Winkelblech, Z. Phys. Chem. 36, 546 (1901).

    Google Scholar 

  10. D. G. Leaist, J. Chem. Soc. Faraday Trans. I, 78, 3069 (1982).

    Google Scholar 

  11. E. J. King, J. Am. Chem. Soc. 73, 155 (1951).

    Google Scholar 

  12. B. B. Owen, J. Am. Chem. Soc. 56, 24 (1934).

    Google Scholar 

  13. Z. Deng and D. G. Leaist, Can. J. Chem. 69, 1548 (1991).

    Google Scholar 

  14. D. G. Leaist. J. Chem. Soc. Faraday Trans. 76, 597 (1991).

    Google Scholar 

  15. C. Erkey and A. Akgerman, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell, London, 1991), p. 251.

    Google Scholar 

  16. J. A. Harpst and P. A. Lyons, J. Phys. Chem. 69, 2333 (1965).

    Google Scholar 

  17. P. Rizzo, J. G. Albright, and D. G. Miller, J. Chem. Eng. Data 42, 623 (1997).

    Google Scholar 

  18. J. S. Newman, Electrochemical Systems (Prentice Hall, Englewood Cliffs, New Jersey, 1973).

  19. L. Hao and D. G. Leaist, J. Chem. Soc. Faraday Trans. 89, 2775 (1993).

    Google Scholar 

  20. E. A. Guggenheim, Thermodynamics, 3rd edn. (North-Holland, Amsterdam, 1957), p. 356.

  21. D. G. Leaist, Ber. Bunsenges. Phys. Chem. 89, 786 (1985).

    Google Scholar 

  22. R. A. Robinson and A. I. Biggs, Aust. J. Chem. 10, 128 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, R., Leaist, D.G. Comparison of the Diffusion of Aqueous Glycine Hydrochloride and Aqueous Glycine. Journal of Solution Chemistry 27, 285–297 (1998). https://doi.org/10.1023/A:1022619430507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022619430507

Navigation