Skip to main content
Log in

Experimental Study of Phased Array Beam Steering Characteristics

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The influence of several geometric parameters of linear phased arrays was studied. A systematic approach using an automated testing assembly was used to assess the steering performance of the array in a solid medium. In addition to calibrating the transducer with respect to its steering accuracy, this arrangement provided a detailed study of the effects of steering angle, number of elements, inter-element spacing and array aperture on the beam directivity. The experimental results show good agreement quantitatively with the predicted steering characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. E. Weyman, Principles and Practice of Echocardiography (Lea and Febiger, Philadelphia, 1994).

    Google Scholar 

  2. M. T. Buchanan and K. Hynynen, Design and experimental evaluation of an intracavity ultrasound phased array system for hyperthermia, IEEE Trans. Biomedi. Engng. 41(12):1178–1187 (1994).

    Google Scholar 

  3. J.-L. Thomas and M. A. Fink, Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 43(6):1122–1129 (1996).

    Google Scholar 

  4. A. Macovski, Ultrasonic imaging using arrays, Proc. IEEE, 67:484–495 (1979).

    Google Scholar 

  5. J. L. Sutton, Underwater acoustic imaging, Proc. IEEE, 67:554–566 (1979).

    Google Scholar 

  6. G. S. Kino, Acoustic imaging for nondestructive evaluation, Proc. IEEE, 67:510–525 (1979).

    Google Scholar 

  7. A. McNab and M. J. Campbell, Ultrasonic phased arrays for nonde-structive testing, NDT Int'l., 6:333–337 (1987).

    Google Scholar 

  8. H. P. Schwarz, Development of a divided-ring array for three-dimensional beam steering in ultrasonic nondestructive testing: Theoretical and experimental results of a prototype, Mater. Eval. 45:951–957 (1987).

    Google Scholar 

  9. H. Wüstenberg, B. Rotter, H. P. Klanke, and D. Harbecke, Ultrasonic phased arrays for nondestructive inspection of forgings, Mater. Eval., 51:669–672 (1993).

    Google Scholar 

  10. J. V. Hatfield, N. R. Scales, A. D. Armitage, P. J. Hicks, Q. X. Chen, and P. A. Payne, An integrated multi-element array transducer for ultrasound imaging, Sensors and Actuators A, 41, 42:167–173 (1994).

    Google Scholar 

  11. O. T. Von Ramm and S. W. Smith, Beam steering with linear arrays, IEEE Trans. Biomed. Engng. BME-30(8):438–452 (1983).

    Google Scholar 

  12. C. S. De Silets, Transducer arrays suitable for acoustic imaging, Ph.D. Dissertation, Stanford University, Stanford, California (1978).

    Google Scholar 

  13. A. R. Selfridge, The design and fabrication of ultrasonic transducers and transducer arrays, Ph.D. Dissertation, Stanford University, Stanford, California (1983).

    Google Scholar 

  14. J. D. Fraser, The design of efficient, broadband ultrasonic transducers, Ph.D. Dissertation, Stanford University, Stanford, California (1983).

    Google Scholar 

  15. D. K. Lemon and G. J. Posakony, Linear array technology in NDE applications, Mater. Eval., 38:34–37

  16. D. H. Turnbull and F. S. Foster, Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 39(4):464–475 (1992).

    Google Scholar 

  17. J. H. Mo, J. B. Fowlkes, A. L. Robinson, and P. L. Carson, Crosstalk reduction with a diaphragm structure for intergrated ultrasound transducer arrays, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 39(1):48–53 (1992).

    Google Scholar 

  18. A. McNab and I. Stumpf, Monolithic phased array for transmission of ultrasound in NDT ultrasonics, Ultrasonics, 24:148–155 (1986).

    Google Scholar 

  19. C. T. Lancée, J. M. Vissers, S. Mientki, C. M. Ligtvoet, and N. Bom, Amplitude errors on beam-steered phased arrays, Ultrasonics, 25:147–153 (1987).

    Google Scholar 

  20. C. T. Lancée, J. M. Vissers, S. Mientki, C. M. Ligtvoet, and N. Bom, Influence of phase errors on beam-steered phased arrays, Ultrasonics, 25:154–159 (1987).

    Google Scholar 

  21. S. C. Wooh and Y. Shi, Influence of phased array element size on beam steering behavior, Ultrasonics, 36:737–749 (1998).

    Google Scholar 

  22. S. C. Wooh and Y. Shi, Optimization of ultrasonic phased arrays, Review of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds., (Plenum Press, New York, 1998).

    Google Scholar 

  23. S. C. Wooh and Y. Shi, A simulation study of the beam steering characteristics of linear phased arrays, J. Nondestr. Eval. 18(2):39–57 (1999).

    Google Scholar 

  24. S. C. Wooh and Y. Shi, Optimum beam steering of linear phased arrays, Wave Motion 29:245–265 (1999).

    Google Scholar 

  25. M. G. Silk, Ultrasonic Transducers for Nondestructive Testing, (Adam Hilger Ltd, Bristol England, 1984).

    Google Scholar 

  26. A. R. Selfridge, G. S. Kino, and B. T. Khuri-Yakub, A theory for the radiation pattern of a narrow-strip acoustic transducer, Appl. Phys. Lett., 37(1):35–36 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Chang Wooh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clay, A.C., Wooh, SC., Azar, L. et al. Experimental Study of Phased Array Beam Steering Characteristics. Journal of Nondestructive Evaluation 18, 59–71 (1999). https://doi.org/10.1023/A:1022618321612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022618321612

Navigation