Skip to main content
Log in

Single-Ion Contributions to Activity Coefficient Derivatives, Second Moment Coefficients, and the Liquid Junction Potential

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We discuss several interrelated single-ion thermodynamic properties required to calculate the liquid junction potential Ψ between two solutions of the same binary electrolyte. According to a previously reported molecular theory of nonuniform electrolyte solutions in nonequilibrium, Ψ is determined by the transport numbers of the ions, and by the second moment coefficients H (2)α of the charge densities around the ions. The latter may be viewed as the single-ion contributors to the second moment condition of Stillinger and Lovett. For a solution of a single binary electrolyte, we relate the H (2)α (R) to the derivatives of the single-ion activity coefficients γα with respect to the ionic strength. In the light of these results, we examine, in some detail, the role played by the specific short-range interionic interactions in determining Ψ. We investigate this matter by means of integral equation calculations for realistic models of LiCl and NaCl aqueous solutions in the 0–1 mol-dm−3 range. In addition to the hypernetted-chain (HNC) relation, we perform calculations under a new integral equation closure that is a hybrid between the HNC and Percus–Yevick closures. Like the HNC approximation, the new closure satisfies the Stillinger and Lovett condition. However, for the models considered in this study, the two closures predict different dependence of the H (2)α and of Ψ on the specific part of the interionic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. O. Raineri and H. L. Friedman, J. Chem. Phys 94, 6135 (1991).

    Google Scholar 

  2. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions (Reinhold, New York, 1950); (b) G. Milazzo, Electrochemistry (Elsevier, Amsterdam, 1963); (c) G. Kortüm, Treatise on Electrochemistry (Elsevier, Amsterdam, 1965); (d) J. Goodisman, Electrochemistry: Theoretical Foundations (Wiley, New York, 1987).

    Google Scholar 

  3. H. L. Friedman, A Course in Statistical Mechanics (Prentice-Hall, Englewood Cliffs, 1985).

    Google Scholar 

  4. F. H. Stillinger and R. Lovett, J. Chem. Phys. 49, 1991 (1968).

    Google Scholar 

  5. C. W. Outhwaite, in Statistical Mechanics, A Specialist Periodical Report, Vol. 2, (The Chemical Society, London, 1975).

    Google Scholar 

  6. D. J. Mitchell, D. A. McQuarrie, A. Szabo, and J. Groeneveld, J. Statistical Phys. 17, 15 (1977).

    Google Scholar 

  7. H. van Beijeren and B. U. Felderhof, Mol. Phys. 38, 1179 (1979).

    Google Scholar 

  8. H. L. Friedman, F. O. Raineri, and H. Xu, Pure Appl. Chem. 92, 76 (1991).

    Google Scholar 

  9. H. L. Friedman and W. D. T. Dale, in Equilibrium Techniques, B. J. Berne, ed. (Plenum, New York, 1977).

    Google Scholar 

  10. P. Sloth, Chem. Phys. Lett. 164, 491 (1989).

    Google Scholar 

  11. P. G. Kusalik and G. N. Patey, J. Chem. Phys. 86, 5110 (1987).

    Google Scholar 

  12. J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19, 774 (1951).

    Google Scholar 

  13. D. A. MacInnes, J. Am. Chem. Soc. 37, 2301 (1915); (b) D. A. MacInnes, The Principles of Electrochemistry (Dover, New York, 1961).

    Google Scholar 

  14. T. Morita, Prog. Theor. Phys. 23, 829 (1960); T. Morita and K. Hiroike, Prog. Theor. Phys. 23, 1003 (1960).

    Google Scholar 

  15. C. G. Gray and K. E. Gubbins, Theory of Molecular Liquids, Vol. I (Oxford, New York, 1984), Appendix 5B.

  16. G. Stell, J. Statist. Phys. 78, 197 (1993).

    Google Scholar 

  17. H. Xu, H. L. Friedman, and F. O. Raineri, J. Solution Chem. 20, 739 (1991).

    Google Scholar 

  18. P. S. Ramanathan and H. L. Friedman, J. Chem. Phys. 54, 1086 (1971).

    Google Scholar 

  19. P. J. Rossky and W. D. T. Dale, J. Chem. Phys. 73, 2457 (1980).

    Google Scholar 

  20. P. J. Rossky and H. L. Friedman, J. Phys. Chem. 84, 587 (1980).

    Google Scholar 

  21. E. C. Zhong and H. L. Friedman, J. Phys. Chem. 92, 1685 (1988).

    Google Scholar 

  22. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, New York, 1960).

    Google Scholar 

  23. D. G. Miller, J. Phys. Chem. 70, 2639 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raineri, F.O., Friedman, H.L. & Stell, G. Single-Ion Contributions to Activity Coefficient Derivatives, Second Moment Coefficients, and the Liquid Junction Potential. Journal of Solution Chemistry 28, 463–488 (1999). https://doi.org/10.1023/A:1022618229925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022618229925

Navigation