Skip to main content
Log in

High-Pressure Liquid-Liquid Immiscibility in Aqueous Solutions of Tetra-n-butylammonium Bromide Studied by a Diamond Anvil Cell Technique

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

By use of a diamond anvil cell, we show that at high pressures aqueous solutions of tetra-n-butylammonium bromide form a closed liquid–liquid immiscibility loop with a critical concentration of about 2.0 mol-kg−1. We report data for a near-critical isopleth, which describes the pressure dependence of the upper and lower consolute points. At about 700 MPa and 373 K both consolute points coincide to form a hypercritical point, which characterizes the minimum pressure to achieve immiscibility. We show that this immiscibility can be rationalized in terms of Pitzer's ion-interaction theory. We determine the ion-interaction parameters of Pitzer's theory up to 423 K at normal pressure. Inclusion of volumetric data gives the correct trend toward a high-pressure immiscibility. We discuss the results in terms of the interplay between ionic and hydrophobic forces in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, R. Pytkowicz, ed. (CRC Press, Boca Raton, 1979), p. 157.

    Google Scholar 

  2. K. S. Pitzer, J. Phys. Chem. 88, 2689 (1984).

    Google Scholar 

  3. K. S. Pitzer, Acc. Chem. Res. 23, 333 (1990).

    Google Scholar 

  4. R. Grzanna and G. M. Schneider, Z. Phys. Chem. 41, 193 (1996).

    Google Scholar 

  5. G. M. Schneider, in Water. A Comprehensive Treatise, Vol. 1, F. Franks, ed. (Plenum Press, New York, 1973), p. 381.

    Google Scholar 

  6. G. M. Schneider, in Chemical Thermodynamics. Specialist Periodical Report, M. L. McGlashan, ed. (The Chemical Society, London, 1978), p. 105.

    Google Scholar 

  7. G. M. Schneider, Ber. Bunsenges. Phys. Chem. 70, 497 (1966).

    Google Scholar 

  8. H. Weingärtner, Ber. Bunsenges. Phys. Chem. 93, 1058 (1989).

    Google Scholar 

  9. M. de Tobriand and M. Lucas, J. Inorg. Nucl. Chem. 141, 1214 (1979).

    Google Scholar 

  10. H. Weingärtner, T. Merkel, U. Maurer, J.-P. Conzen, H. Glasbrenner, and S. Käshammer, Ber. Bunsenges. Phys. Chem. 95, 1579 (1991).

    Google Scholar 

  11. H. Weingärtner and E. Steinle, J. Phys. Chem. 96, 2407 (1992).

    Google Scholar 

  12. H. Weingärtner, J. Chem. Thermodyn. 29, 1409 (1997).

    Google Scholar 

  13. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  14. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  15. R. Grzanna, PhD thesis, Ruhr-Universität Bochum, Bochum, Germany, 1996.

  16. D. J. Bradley and K. S. Pitzer, J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  17. L. Silvester and K. S. Pitzer, J. Solution Chem. 7, 327 (1978).

    Google Scholar 

  18. P. S. Z. Rogers and K. S. Pitzer, J. Phys. Chem. Ref. Data 11, 15 (1982).

    Google Scholar 

  19. J. E. Mayrath and R. H. Wood, J. Chem. Thermodyn. 15, 625 (1983).

    Google Scholar 

  20. J. E. Mayrath, Ph.D. Dissertation, University of Delaware, Newark, Delaware, 1980.

  21. S. Lindenbaum, J. Phys. Chem. 70, 814 (1966).

    Google Scholar 

  22. A. S. Levine and R. H. Wood, J. Phys. Chem. 77, 2390 (1973).

    Google Scholar 

  23. S. Lindenbaum and G. E. Boyd, J. Phys. Chem. 68, 911 (1966).

    Google Scholar 

  24. W.-Y. Wen and S. Saito, J. Phys. Chem. 68, 2639 (1966).

    Google Scholar 

  25. A. Lo Surdo and H. E. Wirth, J. Phys. Chem. 72, 751 (1972).

    Google Scholar 

  26. S. Schiavo, B. Scrosati, and A. Tommasini, Ric. Sci. 37, 211 (1967).

    Google Scholar 

  27. S. Schiavo, B. Scrosati, and A. Tommasini, Ric. Sci. 37, 219 (1967).

    Google Scholar 

  28. J. E. Desnoyers and P. R. Philip, Can. J. Chem. 50, 1094 (1972).

    Google Scholar 

  29. M. L. Japas and J. M. H. Levelt Sengers, J. Phys. Chem. 94, 5361 (1990).

    Google Scholar 

  30. M. Kleemeier, W. Schröer, and H. Weingärtner, J. Mol. Liquids 73/74, 501 (1997).

    Google Scholar 

  31. L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NCR Steam Tables, Nat. Stand. Ref. Data, (U.S. Bureau of Standards U.S. Government Printing Office, Washington, D.C., 1984).

    Google Scholar 

  32. M. Uematsu and E. U. Franck, J. Phys. Chem. Ref. Data 9, 1291 (1980).

    Google Scholar 

  33. F. Franks, in Water. A Comprehensive Treatise, Vol. 2, Chap. 1, F. Franks, ed. (Plenum Press, New York, 1973), p. 1.

    Google Scholar 

  34. P. S. Ramanathan, C. V. Krishnan, and H. L. Friedman, J. Solution Chem. 1, 237 (1972).

    Google Scholar 

  35. H. Xu, H. L. Friedman, and F. O. Raineri, J. Solution Chem. 20, 739 (1991).

    Google Scholar 

  36. A. Ben-Naim, Hydrophobic Interaction (Plenum Press, New York, 1980), p. 185.

    Google Scholar 

  37. H. Weingärtner, M. Kleemeier, S. Wiegand, and W. Schröer, J. Stat. Phys. 78, 169 (1995).

    Google Scholar 

  38. M. E. Fisher, J. Stat. Phys. 75, 1 (1994).

    Google Scholar 

  39. G. Stell, J. Stat. Phys. 78, 197 (1995).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weingärtner, H., Klante, D. & Schneider, G.M. High-Pressure Liquid-Liquid Immiscibility in Aqueous Solutions of Tetra-n-butylammonium Bromide Studied by a Diamond Anvil Cell Technique. Journal of Solution Chemistry 28, 435–446 (1999). https://doi.org/10.1023/A:1022612029577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022612029577

Navigation