Skip to main content
Log in

Weak Solutions of a Generalized Boussinesq System

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the convergence of homoclinic orbits and heteroclinic orbits in the dynamical system governing traveling wave solutions of a perturbed Boussinesq systems modeling two-directional propagation of water waves. Nonanalytic weak solutions are found to be limits of these orbits, including compactons, peakons, and rampons, as well as infinitely many mesaons occurring at the same fixed point in the dynamical system. Singularities of solitary wave solutions in the system are also studied to understand the important impact of both linear and nonlinear dispersion terms on the regularity of these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Benjamin, T. B., Bona, J.L., and Mahony, J. J. (1972). Model equations for long waves in nonlinear dispersive systems. Phil. Trans. Roy. Soc. London Ser. A 272, 47–78.

    Google Scholar 

  2. Bona, J. L., and Li, Y. A. (1997). Decay and analyticity of solitary waves. J. Math. Pures Appl. 76, 377–430.

    Google Scholar 

  3. Camassa, R., and Holm, D. D. (1993). An integrable shallow water equation with peaked solitions. Phys. Rev. Lett. 71, 1661–1664.

    Google Scholar 

  4. Cheng, L. (1996). The cusp solitons in optical fibers. J. Phys. A Math. Gen. 29, L141–L142.

    Google Scholar 

  5. Craig, W. (1985). An existence theory for water waves and the Boussinesq and Kortewegde Vries scaling limits. Commun. Part. Diff. Eq. 10, 787–1003.

    Google Scholar 

  6. Craig, W., Kappeler, T., and Strauss, W. (1992). Gain of regularity for equations of KdV type. Ann. Inst. Henri Poincaré Anal. Nonlin. 9, 147–186.

    Google Scholar 

  7. Fokas, A. S., Olver, P. J., and Rosenau, P. (1996). A plethora of integrable bi-Hamiltonian equations. In Fokas, A. S., and Gel'fand, I. M. (eds), Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman 26, Birkhäuser, Cambridge, MA, pp. 93–101.

    Google Scholar 

  8. Friedrichs, K. O., and Hyers, D. H. (1954). The existence of solitary waves. Commun. Pure Appl. Math 7, 517–550.

    Google Scholar 

  9. Fuchssteiner, B. (1981). The Lie algebra structure of nonlinear evolution equations admitting infinite dimensional abelian symmetry groups. Prog. Theor. Phys. 65, 861–876.

    Google Scholar 

  10. Kato, T. (1983). On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Adv. Math. Suppl. Stud. Appl. Math. 8, 93–128.

    Google Scholar 

  11. Kaup, D. J. (1975). A higher-order water-wave equation and the method for solving it. Prog. Theor. Phys. 54, 396–408.

    Google Scholar 

  12. Kenig, C. E., Ponce, G., and Vega, L. (1993). Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math 46, 527–620.

    Google Scholar 

  13. Kupershmidt, B. A. (1985). Mathematics of dispersive water waves. Commun. Math. Phys. 99, 51–73.

    Google Scholar 

  14. Li, Y. A., and Olver, P. J. (1997). Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system, Part I. Compactons and peakons. Discrete Cont. Dyn. Syst. 3, 419–432 (IMA Preprint Series No. 1424).

    Google Scholar 

  15. Li, Y. A., and Olver, P. J. (1998). Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system, II. Complex analytic behavior and convergence to nonanalytic solutions. Discrete Cont. Dyn. Syst. 4, in press (IMA Preprint Series No. 1424).

  16. Olver, P. J., and Rosneau, P. (1996). Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906.

    Google Scholar 

  17. Ponce, G. (1989). Regularity of solutions to nonlinear dispersive equations. J. Diff. Eq. 78, 122–135.

    Google Scholar 

  18. Rosenau, P. (1994). Nonlinear dispersion and compact structures. Phys. Rev. Lett. 73, 1737–1741.

    Google Scholar 

  19. Rosenau, P., and Hyman, J. M. (1993). Compactons: Solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567.

    Google Scholar 

  20. Scott, A.C., Chu, F. Y. F., and McLaughlin, D. W. (1973). The soliton: A new concept in applied science. Proc. IEEE 61, 1443–1483.

    Google Scholar 

  21. Toland, J. F. (1978). On the existence of a wave of greatest height and Stokes' conjecture. Proc. Roy. Soc. London A 363, 469–485.

    Google Scholar 

  22. Wadati, M, Ichikawa, Y. H., and Shimizu, T. (1980). Cusp soliton of a new integrable nonlinear evolution equation. Prog. Theor. Phys. 64, 1959–1967.

    Google Scholar 

  23. Whitham, G. B. (1974). Linear and Nonlinear Waves, John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.A. Weak Solutions of a Generalized Boussinesq System. Journal of Dynamics and Differential Equations 11, 625–669 (1999). https://doi.org/10.1023/A:1022611428785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022611428785

Navigation