Skip to main content
Log in

Hartley–Crank Equations for Coupled Diffusion in Concentrated Mixed Electrolyte Solutions. The CaCl2 + HCl + H2O System

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Nernst—Planck equations and ionic conductivities are used to calculate accurate limiting interdiffusion coefficients D oik for mixed electrolyte solutions. The electrostatic mechanism for coupled electrolyte diffusion is investigated by calculating the electrostatic contribution to each D oik coefficient to give the flux of each electrolyte driven by the electric field, which is generated by the migration of ions of different mobilities. Ternary diffusion coefficients are measured for dilute aqueous K2SO4 + KOH and Li2SO4 + LiOH solutions. Because of the different mobilities of K+ and Li+ ions relative to SO 2−4 ions, diffusing K2SO4 drives cocurrent flows of KOH, but diffusing Li2SO4 drives counterflows of LiOH. To describe coupled diffusion in concentrated mixed electrolyte solutions, the Hartley–Crank theory is used to correct the limiting D oik coefficients for nonideal solution behavior, viscosity changes, ionic hydration, and the zero-volume flow constraint. Diffusion coefficients predicted for concentrated aqueous CaCl2 + HCl solutions are compared with recently reported data. The large amount of HCl cotransported by the diffusing CaCl2 is attributed to the “salting out” of HCl by CaCl2 and to the migration of H+ ions in the diffusion-induced electric field, which slows down the Cl ions and speeds up the less-mobile Ca2+ ions to maintain electroneutrality along the CaCl2 gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. J. V. Tyrrell and K. R. Harris, Diffusion in Liquids (Butterworths, London, 1984).

    Google Scholar 

  2. E. L. Cussler, Multicomponent Diffusion (Elsevier, Amsterdam, 1976).

    Google Scholar 

  3. D. G. Miller, A. W. Ting, and J. A. Rard, J. Electrochem. Soc. 135, 896 (1988).

    Google Scholar 

  4. J. A. Rard and D. G. Miller, J. Phys. Chem. 91, 4614 (1987).

    Google Scholar 

  5. H. Kim, G. Reinfelds, and L. J. Gosting, J. Phys. Chem. 77, 934 (1973).

    Google Scholar 

  6. R. P. Wendt, J. Phys. Chem. 66, 1279 (1962).

    Google Scholar 

  7. V. Vitagliano, R. Laurentino, and L. Costantino, J. Phys. Chem. 73, 2456 (1969).

    Google Scholar 

  8. D. G. Leaist, J. Chem. Soc. Faraday Trans. 89, 2775 (1993).

    Google Scholar 

  9. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn., (Academic Press, New York, 1959), Chap 11.

    Google Scholar 

  10. J. S. Newman, Electrochemical Systems (Prentice Hall, Englewood Cliffs, 1973).

    Google Scholar 

  11. V. Vitagliano and R. Sartorio, J. Phys. Chem. 74, 2949 (1970).

    Google Scholar 

  12. G. S. Hartley and J. Crank, Trans. Faraday Soc. 45, 801 (1949).

    Google Scholar 

  13. J. R. Hall, B. F. Wishaw, and R. H. Stokes, J. Am. Chem. Soc. 75, 1556 (1953).

    Google Scholar 

  14. B. F. Wishaw and R. H. Stokes, J. Am. Chem. Soc. 76, 2065 (1954).

    Google Scholar 

  15. B. R. Hammond and R. H. Stokes, Trans. Faraday Soc. 52, 781 (1956).

    Google Scholar 

  16. R. Mills, J. Phys. Chem. 67, 600 (1963).

    Google Scholar 

  17. K. S. Pitzer, J. Am. Chem. Soc. 96, 5701 (1974).

    Google Scholar 

  18. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  19. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  20. K. S. Pitzer and G. Mayorga, J. Solution Chem. 3, 539 (1974).

    Google Scholar 

  21. J. Schmoll and H. G. Hertz, Z. Phys. Chem. 194, 193 (1996).

    Google Scholar 

  22. C. Erkey and A. Akgerman, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell, Oxford, 1991).

    Google Scholar 

  23. D. G. Leaist, J. Chem. Soc. Faraday Trans. 87, 597 (1991).

    Google Scholar 

  24. Z. Deng and D. G. Leaist, Can. J. Chem. 69, 1548 (1991).

    Google Scholar 

  25. J. A. Rard and D. G. Miller, J. Solution Chem. 8, 701 (1979).

    Google Scholar 

  26. P. Rizzo, J. G. Albright, and D. G. Miller, J. Chem. Eng. Data 42, 623 (1997).

    Google Scholar 

  27. J. W. Mullin and A. W. Nienow, J. Chem. Eng. Data 9, 526 (1964).

    Google Scholar 

  28. D. G. Leaist and L. Hao, J. Solution Chem. 21, 345 (1992).

    Google Scholar 

  29. R. A. Noulty and D. G. Leaist, J. Solution. Chem. 13, 767 (1984).

    Google Scholar 

  30. D. G. Leaist and P. A. Lyons, J. Phys. Chem. 86, 564 (1982).

    Google Scholar 

  31. D. G. Leaist, J. Chem. Soc. Faraday Trans. I 78, 3069 (1982).

    Google Scholar 

  32. D. G. Leaist and R. A. Noulty, Can. J. Chem. 63, 476 (1985).

    Google Scholar 

  33. D. G. Leaist, L. Hao, and R. Abragimov, J. Chem. Soc. Faraday Trans 89, 515 (1993).

    Google Scholar 

  34. D. G. Leaist, J. Phys. Chem. 93, 474 (1989).

    Google Scholar 

  35. P. J. Dunlop and L. J. Gosting, J. Phys. Chem. 63, 86 (1959).

    Google Scholar 

  36. P. A. Lyons and J. F. Riley, J. Am. Chem. Soc. 74, 5216 (1954).

    Google Scholar 

  37. P. C. Carman, J. Phys. Chem. 73, 1095 (1969).

    Google Scholar 

  38. I. D. Zaytsev and G. G. Aseyev, Properties of Aqueous Solutions of Electrolytes (CRC Press, Boca Raton, 1992), pp. 176, 206.

    Google Scholar 

  39. J. A. Harpst, E. Holt, and P. A. Lyons, J. Phys. Chem. 69, 2333 (1965).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leaist, D.G., Curtis, N. Hartley–Crank Equations for Coupled Diffusion in Concentrated Mixed Electrolyte Solutions. The CaCl2 + HCl + H2O System. Journal of Solution Chemistry 28, 341–366 (1999). https://doi.org/10.1023/A:1022603827760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022603827760

Navigation