Reviews in Fish Biology and Fisheries

, Volume 12, Issue 1, pp 79–103 | Cite as

Ontogeny of yolk-feeding fish: an ecological perspective

  • Ewa Kamler


Ontogeny is a continuous process with temporaryaccelerations. The embryonic period from eggactivation to hatching, and the larval periodthereafter, are considered. Advances in studieson the ontogeny of yolk-feeding Europeanfreshwater and Antarctic marine fish arecompared. New techniques and approaches aresummarized. A method for exact quantificationof the time to any developmental event isrecommended. Four attempts to quantify anindividual's ontogenetic advancement arereviewed, of which Fuiman's ontogenetic indexseems to be the best choice. The relationshipbetween the time to any ontogenetic event(τ, days) and temperature (t, °C)has been quantified by exponential, power law,Bělehradek's, Leiner's, and polynomialmodels, whose common weaknesses are that theparameters have no biological meaning, and theydo not allow comparison of temperaturerequirements between species. The ontogeneticrate (V = 1/τ, days−1) was welldescribed (r2 = 0.92 − 1.00) by a straightline V = a + bt (linear model) in 44 fishspecies over a broad low-mortality temperaturerange. The linear model produces biologicallymeaningful parameters: the temperature ofbiological zero t0 = −a/b, effectivetemperature teff = t −: t0, andeffective day-degrees D°eff = τ(t − t0) = b−1. From t0 andD°eff the time to any ontogeneticevent can be computed as: τ =D°eff/(t − t0). In coldwaterspecies low t0 is accompanied by highD°eff, whereas in warmwater speciesthe opposite is true. The linear model wasvalidated. Day-degrees (D° = τt)and physiological day-degrees (PD° =τt/q, where q is Winberg's temperaturemetabolic correction factor) are based onincorrect assumptions. Their use as temperature-independent measures of ontogeneticadvancement is not advised; by contrast,effective day-degrees (D°eff)are temperature-independent and arerecommended. The remaining extrinsic factorsaffecting ontogenetic rate during yolk feedingare: oxygen, salinity, pH, light, dissolvedbiotic compounds, and anthropogenic factors.The main intrinsic factor is egg size, whichpositively affects the time to particularontogenetic steps at inter- and intra-specificlevels. Attempts to quantify the combinedeffects of temperature and salinity, and oftemperature and egg size, are reviewed.

embryos larvae ontogeny oxygen temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolf, G.R. (1986) Anatomical studies of developing eggs and larvae of cod (Gadus morhua L.). In: Fyhn, H.J. (ed.), Fish Larval Physiology and Anatomy. Basic Research and Effect of Oil. Final Report 1983-1985. University of Bergen, Bergen, pp. 51-115.Google Scholar
  2. Alderdice, D.F. and Hourston, A.S. (1985) Factors influencing development and survival of Pacific herring (Clupea harengus pallasi) eggs and larvae to beginning of exogenous feeding. Can. J. Fish. Aquat. Sci. 42(Suppl. 1), 56-68.Google Scholar
  3. Aldridge, D.C. (1999) Development of European bitterling in the gills of freshwater mussels. J. Fish Biol. 54, 138-151.Google Scholar
  4. Appelbaum, S., Clarke, W.C., Shelbourn, J.E., Jensen, J.O.T., Whyte, J.N.C. and Iwama, G.K. (1995) Studies on rearing of lingcod Ophiodon elongatus. Aquaculture 135, 219-227.Google Scholar
  5. Appelbaum, S. and Kamler, E. (2000) Survival, growth, metabolism and behaviour of Clarias gariepinus (Burchell 1822) early stages under different light conditions. Aquacult. Eng. 22, 269-287.Google Scholar
  6. Araujo-Lima, C.A.R.M. (1994) Egg size and larval development in Central Amazonian fish. J. Fish Biol. 44, 371-389.Google Scholar
  7. Backiel, T. and Horoszewicz, L. (1970) Temperature and fishes; a set of basic information. Olsztyn, ?abieniec, Samodzielna Pracownia Upowszechniania Post?epu IRS. No. 41, 25 pp. (in Polish).Google Scholar
  8. Balon, E.K. (1975) Terminology of intervals in fish development. J. Fish. Res. Bd. Can. 32, 1663-1670.Google Scholar
  9. Balon, E.K. (1986) Saltatory ontogeny and evolution. Riv. Biol.-Biol. Forum 79, 151-190.Google Scholar
  10. Balon, E.K. (1990) Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. Guelph Ichthyol. Rev. 1, 1-42.Google Scholar
  11. Balon, E.K. (1995) The common carp, Cyprinus carpio: its wild origin, domestication in aquaculture, and selection as colored nishikigoi. Guelph Ichthyol. Rev. 3, 1-56.Google Scholar
  12. Bams, R.A. (1970) Evaluation of a revised hatchery method tested on pink and chum salmon fry. J. Fish. Res. Bd. Can. 27, 1429-1452.Google Scholar
  13. Beacham, T.D. and Murray, C.B. (1985) Effect of female size, egg size and water temperature on developmental biology of chum salmon (Oncorhynchus keta) from the Nitinat River, British Columbia. Can. J. Fish. Aquat. Sci. 42, 1755-1765.Google Scholar
  14. Belyj, N.D. (1961) Effect of light on egg development in Stizostedion lucioperca and Rutilus rutilus heckeli. Dokl. Akad. Nauk SSSR 138, 935-937 (in Russian).Google Scholar
  15. Belyj, N.D. (1967) Development of eggs of Lucioperca lucioperca (L.) and Abramis brama (L.) in the lower Dnieper waters of different salinity. Vopr. Ikhtiol. 7, 187-191 (in Russian).Google Scholar
  16. Blaxter, J.H.S. (1969) Development: eggs and larvae. In: Hoar, W.S. and Randall, D.J. (eds.), Fish Physiology, Vol. 3, Reproduction and Growth. Academic Press, New York, pp. 177-252.Google Scholar
  17. Blaxter, J.H.S. (1988) Pattern and variety in development. In: Hoar, W.S. and Randall, D.J. (eds.), Fish Physiology, Vol. 11A, Eggs and Larvae. Academic Press, San Diego, pp. 1-58.Google Scholar
  18. Blaxter, J.H.S. and Hempel, G. (1963) The influence of egg size on herring larvae (Clupea harengus L.). J. Cons. Perm. Int. Explor. Mer. 28, 211-240.Google Scholar
  19. Bliss, C.I. (1935) The calculation of the dosage-mortality curve. Ann. Appl. Biol. 22, 134-167.Google Scholar
  20. Bliss, C.I. (1937) The calculation of the time-mortality curve. Ann. Appl. Biol. 24, 815-841.Google Scholar
  21. Bonis?awska, M., Korzelecka, A. and Winnicki, A. (1999) Morphomechanical aspects of the embryonic development of sun bleak (Leucaspius delineatus Heck.). Fol. Univ. Agric. Stetin. Piscaria 192(25), 13-23.Google Scholar
  22. Bonis?awska, M., Formicki, K. and Winnicki, A. (2000) Size of eggs and duration of embryogenesis in fishes. Acta Ichthyol. Piscatoria 30, 61-71.Google Scholar
  23. Braginskaya, R.Ya. (1960) Developmental stages of cultured carp. In: Kryzhanovskij, S.G. (ed.), Raboty po Izucheniyu Etapov Razvitiya Tuvodnykh Kostistykh Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 28, pp. 129-149 (in Russian).Google Scholar
  24. Braum, E. (1964) Experimentelle Untersuchungen zur ersten Nahrungsaufnahme und Biologie an Jungfishen von Blaufelchen (Coregonus wartmanni Bloch), Weissfelchen (Coregonus fera Jurine) und Hechten (Esox lucius L.). Arch. Hydrobiol. (Suppl. 28, V), 183-244.Google Scholar
  25. Brett, J.R. (1979) Environmental factors and growth. In: Hoar,W.S., Randall, D.J. and Brett, J.R. (eds.), Fish Physiology, Vol. VIII, Bioenergetics and Growth. Academic Press, New York, pp. 599-675.Google Scholar
  26. Brooks, S., Tyler, C.R. and Sumpter, J.P. (1997) Egg quality in fish: what makes a good egg? Rev. Fish Biol. Fish. 7, 387-416.Google Scholar
  27. Burchett, M.S. (1983) Life cycle of Notothenia rossii from South Georgia. Brit. Antarct. Surv. Bull. 61, 71-73.Google Scholar
  28. Burchett, M.S., Sayers, P.J., North, A.W. and White, G.M. (1983) Some biological aspects of the nearshore fish population at South Georgia. Brit. Antarct. Surv. Bull. 59, 63-74.Google Scholar
  29. Buznikov, G.A. (1961) Hyaluronidase and hatching enzyme in embryogenesis of teleost fishes. In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologii i Fiziologii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 33, pp. 173-218 (in Russian).Google Scholar
  30. Calamari, D., Marchetti, R. and Vilati, G. (1981) Effect of long-term exposure to ammonia on the developmental stages of rainbow trout (Salmo gairdneri Richardson). Rapp. P.-V. Reun. Cons. Perm. Int. Explor. Mer 178, 81-86.Google Scholar
  31. Chambers, R.C. and Leggett, W. (1992) Possible causes and consequences of variation in age and size at metamorphosis in flatfishes (Pleuronectiformes): an analysis at the individual, population and species level. Neth. J. Sea Res. 29, 7-24.Google Scholar
  32. Chambers, R.C. and Trippel, E.A. (1997) Early Life History and Recruitment in Fish Populations. Chapman & Hall, London, 596 pp.Google Scholar
  33. Chepurnov, A.V. (1989) Farming of the Black Sea Fishes in Closed Systems. Naukova Dumka, Kiev, 102 pp. (in Russian).Google Scholar
  34. Chernyaev, Zh.A. (1981) Effect of temperature and light on embryonic development of coregonid fishes in the Baikal Lake. In: Reshetnikov, Yu.S. (ed.), Tezisy Dokl. Vtorogo Vsesoyuzn. Soveshch. po Biologii i Biotekhnike Razvedeniya Sigovykh Ryb, Petrozavodsk, 1981. Minist. Rybnogo Khoz. SSSR, Akademiya Nauk SSSR, Petrozavodsk, pp. 22-25 (in Russian).Google Scholar
  35. Cunha, I. and Planas, M. (1997) Temperature does not affect the fatty acid utilization in unfed turbot (Scophthalmus maximus L.) larvae. Third International Symposium on Research for Aquaculture: Research and Applied Aspects, 24-27 August. Barcelona.Google Scholar
  36. Dave, G. (1985) The influence of pH on the toxicity of aluminium, cadmium, and iron to eggs and larvae of the zebrafish, Brachydanio rerio. Ecotoxicol. Environ. Safety 10, 253-267.Google Scholar
  37. Depeche, J. and Billard, R. (1991) Morphological and chronological tables of embryonic development in fish. La Mer 29, 35-38.Google Scholar
  38. Detlaf, T.A. and Detlaf, A.A. (1960) On dimensionless characteristics of the duration of development in embryology. Dokl. Akad. Nauk SSSR 134, 199-202 (in Russian).Google Scholar
  39. DiMichele, L. and Taylor, M.H. (1980) The environmental control of hatching in Fundulus heteroclitus. J. Exp. Zool. 214, 181-187.Google Scholar
  40. DiMichele, L., Powers, D.A. and DiMichele, J.A. (1986) Developmental and physiological consequences of genetic variation at enzyme synthesizing loci in Fundulus heteroclitus. Am. Zool. 26, 201-208.Google Scholar
  41. Disler, I.N. (1957) Development of autumn keta of the River Amur, Oncorhynchus keta (Walb.). In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 20, pp. 3-70 (in Russian).Google Scholar
  42. Dmitrieva, E.N. (1960a) Stages of development of endemic bream. In: Kryzhanovskij, S.G. (ed.), Raboty po Izucheniyu Etapov Razvitiya Tuvodnykh Kostistykh Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 28, pp. 41-78 (in Russian).Google Scholar
  43. Dmitrieva, E.N. (1960b) Comparative analysis of developmental etaps of zander, Lucioperca lucioperca (Linné) from Volga, Don and Kuban Rivers. In: Kryzhanovskij, S.G. (ed.), Nekotorye Osobennosti Etapov Razvitiya Leshcha, Sazana, Vobly, Tarani i Sudaka Delty Volgi, Dona i Kubani. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 25, pp. 99-136 (in Russian).Google Scholar
  44. Dragomirov, N.I. (1957) Larval development of Russian sturgeon Acipenser güldenstädti Brandt. In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologiii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 20, pp. 187-231 (in Russian).Google Scholar
  45. Dragomirov, N.I. (1961) Ecomorphological characteristics of larval development of beluga, Huso huso (L.). In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologii i Fiziologii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 33, pp. 72-93 (in Russian).Google Scholar
  46. Duis, K. (2001) Toxicity of acidic post-mining lake water to early life stages of tench, Tinca tinca (Cyprinidae). Water Air Soil Pollut. 132, 373-388.Google Scholar
  47. Dujmic, A. (1997) Der vernachlässigte Edelfisch: die Äsche. Status, Verbreitung, Biologie, Ökologie und Fang. Facultas Universitätsverlag, Wien, 111 pp.Google Scholar
  48. Eastman, J.T. (1993) Antarctic Fish Biology. Evolution in a Unique Environment. Academic Press, San Diego, 322 pp.Google Scholar
  49. Eckmann, R. (1987) A comparative study on the temperature dependence of embryogenesis in three coregonids (Coregonus spp.) from Lake Constance. Schweiz. Z. Hydrol. 49, 353-362.Google Scholar
  50. Efremenko, V.N. (1983a) Description of the eggs and larvae of Muraenolepis microps (Muraenolepidae) from the Scotia Sea. J. Ichthyol. (Engl. Transl. Vopr. Ikhtiol.) 23, 139-142.Google Scholar
  51. Efremenko, V.N. (1983b) Atlas of fish larvae of the southern ocean. Cybium 7(2), 1-74.Google Scholar
  52. Ege, R. and Krogh, A. (1914) On the relation between temperature and the respiratory exchange in fishes. Int. Rev. Hydrobiol. Hydrogr. 7, 48-55.Google Scholar
  53. Ehrlich, K.F. and Muszynski, G. (1981) The relationship between temperature-specific yolk utilization and temperature selection of larval grunion. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 178, 312-313.Google Scholar
  54. Embody, G.C. (1934) Relation of temperature to the incubation periods of eggs of four species of trout. Trans. Am. Fish. Soc. 64, 281-292.Google Scholar
  55. Ernst, V.V. and Neff, J.M. (1977) The effects of the water-soluble fraction of no. 2 fuel oil on the early development of the estuarine fish, Fundulus grandis Baird and Girard. Environ. Pollut. 14, 25-35.Google Scholar
  56. Escaffre, A.-M. and Bergot, P. (1984) Utilization of the yolk in rainbow trout alevins (Salmo gairdneri Richardson): effect of egg size. Reprod. Nutr. Develop. 24, 449-460.Google Scholar
  57. Flajšhans, M., Linhart, O. and Kvasni?ka, P. (1995) Tench, Tinca tinca (Linnaeus, 1758): a model for chromosomal manipulation studies. Pol. Arch. Hydrobiol. 42, 123-131.Google Scholar
  58. Formicki, K., Bonis?awska, M. and Jasi?ski, M. (1997) Spatial orientation of trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walb.) embryos in natural and artificial magnetic fields. Acta Ichthyol. Piscatoria 27, 29-40.Google Scholar
  59. Formicki, K. and Winnicki, A. (1998) Reactions of fish embryos and larvae to constant magnetic fields. Ital. J. Zool. 65(Suppl.), 479-482.Google Scholar
  60. Formicki, K., ?ucewicz, O., Winnicki, A. and Domaga?a, J. (1999) Changes in embryogenesis and sex determination in trout (Salmo trutta L.) in alternating magnetic field. Abstracts. XXVIth General Assembly, International Union of Radio Science, University of Toronto, 13-21 August, 1 p.Google Scholar
  61. Fowler, H.W. and Fowler, F.G. (1964) The Concise Oxford Dictionary of Current English. Clarendon Press, Oxford, 1555 pp.Google Scholar
  62. Fuiman, L.A. (1994) The interplay of ontogeny and scaling in the interactions of fish larvae and their predators. J. Fish Biol. 45(Suppl. A), 55-79.Google Scholar
  63. Fuiman, L.A. (1997) What can flatfish ontogenies tell us about pelagic and benthic lifestyles? J. Sea Res. 37, 257-267.Google Scholar
  64. Fuiman, L.A. and Trojnar, J.R. (1980) Factors affecting egg diameter of white suckers (Catostomus commersoni). Copeia 1980, 699-704.Google Scholar
  65. Fuiman, L.A. and Higgs, D.M. (1997) Ontogeny, growth and the recruitment process. In: Chambers, R.C. and Trippel, E.A. (eds.), Early Life History and Recruitment in Fish Populations. Chapman & Hall, London, pp. 225-249.Google Scholar
  66. Fuiman, L.A., Poling, K.R. and Higgs, D.M. (1998) Quantifying developmental process for comparative studies of larval fishes. Copeia 1998, 602-611.Google Scholar
  67. Fuiman, L.A. and Werner, R.G. (eds.) (2002) Fishery Science. The Unique Contributions of Early Life Stages, 326 pp.Google Scholar
  68. Garside, E.T. (1966) Effects of oxygen in relation to temperature on the development of embryos of brook trout and rainbow trout. J. Fish. Res. Bd. Can. 23, 1121-1134.Google Scholar
  69. Gela, D., Linhart, O., Flajšhans, M., Duda, P., Rodina, M. and Novák, V. (2000) Differences in egg incubation of tench (Tinca tinca L.) related to the procedure of elimination of egg stickness. Abstracts. III International Workshop “Biology and Culture of the Tench (Tinca tinca (L.)”. Machern, Germany, 11-15 September.Google Scholar
  70. Geldhauser, F. (1995) Some aspects of embryonic and larval development of tench (Tinca tinca L.). Pol. Arch. Hydrobiol. 42, 87-95.Google Scholar
  71. Ginzburg, Ya.I. (1950). Development of European catfish-Silurus glanis Linné. Tr. Kaspij. Bassejnogo Filiala VNIRO 11, 109-148 (in Russian).Google Scholar
  72. Ginzburg, A.S. and Detlaf, T.A. (1969) Development of Acipenserid Fishes (Egg Ripening, Egg Activation and Embryogenesis). Nauka, Moscow, 134 pp. (in Russian).Google Scholar
  73. Gorodilov, Y.N. (1991) Periodization and chronology of development of the perch, Perca fluviatilis L. Ontogenez 22, 282-290 (in Russian).Google Scholar
  74. Gorodilov, Y.N. (1996) Description of the early ontogeny of the Atlantic salmon, Salmo salar, with a novel system of interval (state) identification. Env. Biol. Fishes 47, 109-127.Google Scholar
  75. Goryczko, K. (1972) Incubation of eggs from the autumn spawning of rainbow trout (Salmo gairdneri Richardson). Roczn. Nauk Roln. Ser. H 94, 69-80 (in Polish).Google Scholar
  76. Gosteeva, M.N. (1957) Ecomorphological characteristics of development of Aral bream Abramis brama orientalis (Berg). In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologiii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 20, pp. 121-147 (in Russian).Google Scholar
  77. Gottschalk, T., Fleig, R. and Hubenova-Siderova, T. (2000) Larval development of the tench (Tinca tinca) seen in the scanning electron microscope. Abstracts. III International Workshop “Biology and Culture of the tench (Tinca tinca (L.)”, Machern, Germany, 11-15 September.Google Scholar
  78. Gruber, K. and Wieser, W. (1983) Energetics of development of the Alpine charr, Salvelinus alpinus, in relation to temperature and oxygen. J. Comp. Physiol. 149, 485-493.Google Scholar
  79. Hayes, F.R. (1949) The growth, general chemistry, and temperature relations of salmonid eggs. Q. Rev. Biol. 24, 281-308.Google Scholar
  80. Haylor, G.S. and Mollah, M.F.A. (1995) Controlled hatchery production of African catfish, Clarias gariepinus: the influence of temperature on early development. Aquat. Living Resour. 8, 431-438.Google Scholar
  81. Hecht, T. and Appelbaum, S. (1988) Observations on intraspecific aggresion and coeval sibling cannibalism in juvenile Clarias gariepinus (Claridae Pisces) under controlled conditions. J. Zool. (Lond.) 214, 21-44.Google Scholar
  82. Heming, T.A. (1982) Effect of temperature on utilization of yolk by chinook salmon (Oncorhynchus tshawytscha) eggs and alevins. Can. J. Fish. Aquat. Sci. 39, 1554-1562.Google Scholar
  83. Herzig, A. and Winkler, H. (1985) Der Einfluss der Temperatur auf die embryonale Entwicklung der Cypriniden. Öst. Fisch. 38, 182-196.Google Scholar
  84. Herzig, A. and Winkler, H. (1986) The influence of temperature on the embryonic development of three cyprinud fishes, Abramis 100 brama, Chalcalburnus chalcoides mento and Vimba vimba. J. Fish. Biol. 28, 171-181.Google Scholar
  85. Hogendoorn, H. and Vismans, M.M. (1980) Controlled propagation of the African catfish, Clarias lazera (C.&V.). II. Artificial reproduction. Aquaculture 21, 39-53.Google Scholar
  86. Holliday, F.G.T and Blaxter, J.H.S. (1960) The effects of salinity on the developiong eggs and larvae of the herring. J. Mar. Biol. Assoc. U.K. 39, 591-603.Google Scholar
  87. Houde, E.D. (1994) Differences between marine and freshwater fish larvae: implications for recruitment. ICES J. Mar. Sci. 51, 91-97.Google Scholar
  88. Huisman, E.A. (1979) The culture of grass carp (Ctenopharyngodon idella Val.). In: Halver, J.E. and Tiews, K. (eds.), Finfish Nutrition and Fishfeed Technology, Vol. 1. Heenemann GmbH & Co., Berlin, pp. 491-500.Google Scholar
  89. Humpesch, U.H. (1985) Inter-and intra-specific variation in hatching success and embryonic development of five species of salmonids and Thymallus thymallus. Arch. Hydrobiol. 104, 129-144.Google Scholar
  90. Humpesh, U.H. and Elliott, J.M. (1980) Effect of temperature on the hatching time of eggs of three Rhitrogena spp. (Ephemeroptera) from Austria streams and an English stream and river. J. Anim. Ecol. 49, 643-661.Google Scholar
  91. Jezierska, B. and Witeska, M. (2001) Metal Toxicity to Fish. Wydawnictwo Akademii Podlaskiej, Siedlce, 318 pp.Google Scholar
  92. Jobling, M., Jørgensen, E.H., Arnesen, A.M. and Ringø, E. (1993) Feeding, growth and environmental requirements of Arctic charr: a review of aquaculture potential. Aquacult. Int. 1, 20-46.Google Scholar
  93. Kami?ski, R., Myszkowski, L. and Wolnicki, J. (2001) Response to 2-phenoxyethanol in juvenile Vimba vimba (L.). Arch. Pol. Fish. 9, 71-78.Google Scholar
  94. Kamler, E. (1971) Reactions of two species of aquatic insects to the changes of temperature and oxygen concentration. Pol. Arch. Hydrobiol. 18, 303-323.Google Scholar
  95. Kamler, E. (1976) Variability of respiration and body composition during early developmental stages of carp. Pol. Arch. Hydrobiol. 23, 431-485.Google Scholar
  96. Kamler, E. (1992) Early Life History of Fish: An Energetics Approach. Chapman & Hall, London, 267 pp.Google Scholar
  97. Kamler, E. and Kato, T. (1983) Efficiency of yolk utilization by Salmo gairdneri in relation to incubation temperature and egg size. Pol. Arch. Hydrobiol. 30, 271-306.Google Scholar
  98. Kamler, E., Szlami?ska, M., Przyby?, A., Barska, B., Jakubas, M., Kuczy?ski, M. and Raciborski, K. (1990) Developmental response of carp, Cyprinus carpio, larvae fed different foods or starved. Environ. Biol. Fish. 29, 303-313.Google Scholar
  99. Kamler, E., Szlami?ska, M., Kuczy?ski, M., Hamá?ková, J., Kou?il, J and D?browski, R. (1994) Temperature-induced changes of early development and yolk utilization in the African catfish Clarias gariepinus. J. Fish Biol. 44, 311-326.Google Scholar
  100. Kamler, E., Keckeis, H. and Bauer-Nemeschkal, E. (1998) Temperature-induced changes of survival, development and yolk partitioning in Chondrostoma nasus. J. Fish Biol. 52, 658-682.Google Scholar
  101. Kawajiri, M. (1927a) On the optimum temperature of water for hatching the eggs of rainbow trout (Salmo irideus Gibbons). J. Imp. Fish. Inst., Tokyo 23(3), 59-65.Google Scholar
  102. Kawajiri, M. (1927b) The optimum temperature of water for the hatching of the eggs of trout, Oncorhynchus masou (Walbaum). J. Imp. Fish. Inst., Tokyo 23(2), 14-21.Google Scholar
  103. Keckeis, H. (2001) Influence of river morphology and current velocity conditions on spawning site selection of Chondrostoma nasus (L.). Arch. Hydrobiol. Suppl. 135, 341-356.Google Scholar
  104. Keckeis, H., Bauer-Nemeschkal, E. and Kamler, E. (1996) Effects of the reduced oxygen level on the mortality and hatching rate of Chondrostoma nasus embryos. J. Fish Biol. 49, 430-440.Google Scholar
  105. Keckeis, H., Bauer-Nemeschkal, E., Menshutkin, V.V., Nemeschkal, H.L. and Kamler, E. (2000) Effects of female attributes and egg properties on offspring viability in a rheophilic cyprinid, Chondrostoma nasus. Can. J. Fish. Aquat. Sci. 57, 789-796.Google Scholar
  106. Keckeis, H., Kamler, E., Bauer-Nemeschkal, E. and Schneeweiss, K. (2001) Survival, development and food energy partitioning of nase larvae and early juveniles at different temperatures. J. Fish Biol. 59, 45-61.Google Scholar
  107. Kellermann, A. (1990) Catalogue of early life stages of Antarctic notothenioid fishes. Ber. Polarforsch. 67, 45-136.Google Scholar
  108. Kendall, A.W. Jr., Ahlstrom, E.H. and Moser, H.G. (1984) Early life history of fishes and their characters. In: Moser, H.G., Richards, W.J., Cohen, D.M., Fahay, M.P. Kendall, A.W. Jr. and Richardson, S.L. (eds.), Ontogeny and Systematics of Fishes. Proceedings of the International Symposium Dedicated to the Memory of Elbert Halvor Ahlstrom, August 15-18, 1983, La Jolla, California, American Society of Ichthyologists and Herpetologists, Special Publication, pp. 11-22.Google Scholar
  109. Kinne, O. and Kinne, E.M. (1962) Rates of development in embryos of a cyprinodont fish exposed to different temperature-salinityoxygen combinations. Can. J. Zool. 40, 231-253.Google Scholar
  110. Klinkhardt, M. (1986) Ergebnisse von Untersuchungen zur Schlupf-und Dottersackphase der Larven von Rügenschen Früjahrsheringen (Clupea harengus L.). Fischerei-Forschung Rostock 24, 28-30.Google Scholar
  111. Knutsen, G.M. and Tilseth, S. (1985) Growth, development and feeding success of Atlantic cod larvae Gadus morhua related to egg size. Trans. Am. Fish. Soc. 114, 507-511.Google Scholar
  112. Koblitskaya, A.F. (1981) A Key for Identification of Young Freshwater Fishes. Legkaya i Pishchevaya promyshlennost, Moscow, 208 pp. (in Russian).Google Scholar
  113. Kokurewicz, B. (1969) The influence of temperature on the embryonic development of the perches: Perca fluviatilis L. and Lucioperca lucioperca (L.). Zoologica Pol. 19, 47-67.Google Scholar
  114. Kokurewicz, B. (1970) The effect of temperature on embryonic development of Tinca tinca (L.) and Rutilus rutilus (L.). Zoologica Pol. 20, 317-337.Google Scholar
  115. Kokurewicz, B. (1971) Temperature conditions, development and reproduction of some fish species. Wroc?aw, ?abieniec, Samodzielna Pracownia Upowszechniania Post?pu IRS. No. 47, 18 pp. (in Polish).Google Scholar
  116. Kokurewicz, B. (1981) Effect of different thermal regimes on reproductive cycles of tench (Tinca tinca L.). Part VII. Embryonal development of progeny. Pol. Arch. Hydrobiol. 28, 243-256.Google Scholar
  117. Kokurewicz, B., Kowalewski, M. and Witkowski, A. (1980) Influence of constant and variable temperature on the embryonic development of European grayling, Thymallus thymallus (L.). Zoologica Pol. 27, 335-362.Google Scholar
  118. Korovina, V.M. (1978) On the relationships among groups of salmonid fishes (fam. Salmonidae): the structure of eggs and several peculiarities of morphogenesis. In: Skarlato, O.A. (ed.), Morfologiya i Sistematika Ryb. Zool. Inst. ANSSSR, Leningrad, pp. 40-52 (in Russian).Google Scholar
  119. Ková?, V. (2000) Early development of Zingel streber. J. Fish Biol. 57, 1381-1403.Google Scholar
  120. Kryzhanovskij, S.G. (1949) Ecomorphological principles of development in carps, loaches and catfishes. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR 1, 5-332 (in Russian).Google Scholar
  121. Kujawa, R., Mamcarz, A. and Kucharczyk, D. (1997) Effect of tempeature on embryonic development of asp (Aspius aspius L.). Pol. Arch. Hydrobiol. 44, 139-143.Google Scholar
  122. Laitinen, M. (1994) Calcium and magnesium concentrations in ova, bone and muscle and quality of reproductive products of the 101 perch (Perca fluviatilis L.) in an acid and a neutral lake. Pol. Arch. Hydrobiol. 41, 495-506.Google Scholar
  123. Lange, N.O. (1960a) Developmental etaps of Rutilus rutilus heckeli (Nordmann) and Rutilus rutilus caspicus (Jakovlev) from Kuban and Don Rivers. In: Kryzhanovskij, S.G. (ed.), Nekotorye Osobennosti Etapov Razvitiya Leshcha, Sazana, Vobly, Tarani i Sudaka Delty Volgi, Dona i Kubani. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 25, pp. 47-98 (in Russian).Google Scholar
  124. Lange, N.O. (1960b) Developmental etaps of roach in different ecological conditions. In: Kryzhanovskij, S.G. (ed.), Raboty po Izucheniyu Etapov Razvitiya Tuvodnykh Kostistykh Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 28, pp. 5-40 (in Russian).Google Scholar
  125. Lange, N.O., Dmitrieva, E.N., Smirnova, E.N. and Pe?áz, M. (1974) Methods of studying the morphological and ecological peculiarities of fish development during the emvmbryonic, larval and juvenile periods. In: Volskis, R.S. (ed.), Tipovye Metodiki Issledovaniya Produktivnosti Vidov Ryb v Predelakh ikh Arealov. Mintis, Vilnius, pp. 56-71 (in Russian).Google Scholar
  126. Leiner, M. (1932) Die Entwicklungsdauer der eier des dreistachelingen stichlings in ihrer abhängigkeit von der temperatur. Z. Vergl. Physiol. 16, 590-605.Google Scholar
  127. Leitritz, E. and Lewis, R.C. (1976) Trout and salmon culture. State of California, Department Fish Game. Fish Bull. No. 164, 1-196.Google Scholar
  128. Li, X., Jenssen, E. and Fyhn, H.J. (1989) Effects of salinity on egg swelling in Atlantic salmon (Salmo salar). Aquaculture 76, 317-334.Google Scholar
  129. Lindroth, A. (1946) Zur Biologie der Befruchtung und Entwicklung beim Hecht. Rep. Inst. Freshwat. Res. Drottingholm 24, 1-173.Google Scholar
  130. Linkowski, T.B. (1997) Morphological Variation, Systematics and Speciation of the Ceratoscopelus townsendi-C. warmingii complex (Osteichthyes: Myctophidae) Based on the Studies on the Morphology and Microstructure of Otoliths. Morski Instytut Rybacki, Gdynia, 198 pp. (in Polish).Google Scholar
  131. Lønning, S., Kjørsvik, E. and Falk-Petersen, I.-B. (1988) A comparative study of pelagic and demersal eggs from common marine fishes in northern Norway. Sarsia 73, 49-60.Google Scholar
  132. Luberda, Z., Strzezek, J. and Luczynski, M. (1992) Some properties of a proteinase isolated from the hatching liquid of Coregonus albula. Pol. Arch. Hydrobiol. 39, 615-621.Google Scholar
  133. Luczynski, M. and Kirklewska, A. (1984) Dependence of Coregonus albula embryogenesis rate on the incubation temperature. Aquaculture 42, 43-55.Google Scholar
  134. MacCrimmon, H.R. and Kwain, W. (1969) Influence of light on early development and meristic characters in the rainbow trout, Salmo gairdneri Richardson. Can. J. Zool. 47, 631-637.Google Scholar
  135. Makeeva, A.P. and Pavlov, D.S. (1998) Freshwater ichthyoplankton of Russia (Atlas). Izdatelstvo Moskovskogo Universiteta, Moscov, 216 pp. (in Russian).Google Scholar
  136. Marr, D.H.A. (1966) Influence of temperature on the efficiency of growth of salmonid embryos. Nature 212, 957-959.Google Scholar
  137. Marsh, E. (1986) Effects of egg size on offspring fitness and maternal fecundity in the orangethroat darter, Etheostoma spectabile (Pisces: Percidae). Copeia 1986, 18-30.Google Scholar
  138. Miller, TJ., Crowder, L.B., Rice, J.A. and Marshall, E.A. (1988) Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657-1670.Google Scholar
  139. Moser, H.G. (ed.) (1984) Ontogeny and Systematic of Fishes. Amer. Soc. Ichthyol. Herpet. Special Publ., Vol. 1, 760 pp.Google Scholar
  140. Nelson, S.G and Wilkins, S. De C. (1994) Growth and respiration of embryos and larvae of the rabbitfish Siganus randalli (Pisces, Siganidae). J. Fish Biol. 44, 513-525.Google Scholar
  141. North, A.W. and Kellermann, A. (1990) Key to the early stages of Antarctic fish. Ber. Polarforsch. 67, 1-44.Google Scholar
  142. Onuoha, G.C. and Nwadukwe, F.O. (1990) Influence of liquid petroleum refinery effluent on the hatching success of Clarias gariepinus (African mud fish) eggs. Environ. Ecol. 8, 1201-1206.Google Scholar
  143. Osse, J.W.M. (1989) A functional explanation for a sequence of developmental events in the carp. The absence of gills in early larvae. Acta Morph. Neerl.-Scand. 27, 111-118.Google Scholar
  144. Pe?áz, M. (1968) Development of the chub, Leuciscus cephalus (Linnaeus, 1758) in the posthatching period. Zool. Listy 17, 269-278.Google Scholar
  145. Pe?áz, M. (1971) Differences in mortality rate and development in feeding and starvating larvae of Chondrostoma nasus and Barbus barbus (Pisces). Zool. Listy 20, 85-94.Google Scholar
  146. Pe?áz, M. (1973) Embryonic development of the barb, Barbus barbus (Linnaeus, 1758). Zool. Listy 22, 363-374.Google Scholar
  147. Pe?áz, M. (1974) Early development of the nase carp, Chondrostoma nasus (Linnaeus, 1758). Zool. Listy 23, 275-288.Google Scholar
  148. Pe?áz, M. (1975) Early development of the grayling Thymallus thymallus (Linnaeus, 1758). Acta Sci. Nat. Acad. Sci. Bohemoslov. (Brno) 9(11), 1-35.Google Scholar
  149. Pe?áz, M. (1976) Early development of the spirilin, Alburnoides bipunctatus (Bloch, 1782). Acta Soc. Sci. Natur. Mus. Morav. Occid. T?ebi? 10, 25-34 (in Czech).Google Scholar
  150. Pe?áz, M. (1983) Ecomorphological laws and saltation in the early ontogeny of Salmonoidei. Folia Zool. 32, 365-373.Google Scholar
  151. Pe?áz, M. (2001) A general framework of fish ontogeny: a review of the ongoing debate. Folia Zool. 50, 241-256.Google Scholar
  152. Pe?áz, M. and Št?rba, O. (1969) Notes on the incubation period, growth and mortality of the chub, Leuciscus cephalus (Linné, 1758), in the early life-history stages. Acta Soc. Zool. Bohemoslov. 33, 56-70.Google Scholar
  153. Pe?áz, M. and Prokeš, M. (1978) Reproduction and early development of the gudgeon. I. Spawning and embryonic period. Folia Zool. 28, 257-267.Google Scholar
  154. Pe?áz, M. and Gajdušek, J. (1979) Early development of bream, Abramis brama, from the water reservoir Mostišt?, Czechoslovakia. Folia Zool. 28, 347-360.Google Scholar
  155. Pe?áz, M. and P?ihoda, J. (1981) Reproduction and early ontogeny of Hucho hucho. Acta Sci. Nat. Acad. Sci. Bohemoslov. (Brno) 15(6), 1-33.Google Scholar
  156. Pe?áz, M., Wohlgemuth, E., Hamá?ková, J. and Kou?il, J. (1981) Early ontogeny of the tench, Tinca tinca. I. Embryonic period. Folia Zool. 30, 165-175.Google Scholar
  157. Pe?áz, M., Prokeš, M., Kou?il, J. and Hamá?ková, J. (1983) Early development of the carp, Cyprinus carpio. Acta Sci. Nat. Acad. Sci. Bohemoslov. (Brno) 17(2), 1-39.Google Scholar
  158. Pe?áz, M., Prokeš, M., Kou?il, J. and Hamá?ková, J. (1986) Effect of temperature on early development and growth of tench. In: Jirásek, J. and Spurný, P. (eds.), Proceedings of Symposium Moderní Technologické Postupy Odchovu Pl?dku Teplomilných Ryb. Poho?elice, 2-3 December, pp. 106-113 (in Czech).Google Scholar
  159. Pepin, P. (1991) Effect of temperature and size on development, mortality and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48, 503-518.Google Scholar
  160. Peterson, R.H., Daye, P.G. and Metcalfe, J.L. (1980) Inhibition of Atlantic salmon (Salmo salar) hatching at low pH. Can. J. Fish. Aquat. Sci. 37, 770-774.Google Scholar
  161. Prokeš, M. and Pe?áz, M. (1980) Early development of the chub, Leuciscus cephalus. Acta Sci. Nat. Acad. Sci. Bohemoslov. (Brno) 14(7), 1-40.Google Scholar
  162. Raciborski, K. (1987) Energy and protein transformation is sea trout (Salmo trutta L.) larvae during transition from yolk to external food. Pol. Arch. Hydrobiol. 34, 437-502.Google Scholar
  163. Radtke, R.L., Kellermann, A.K., Shafer, D. and Ruzicka, J.J. (1989) Early life histories of antarctic fishes. Antarct. J. U. S. 24, 194-196.Google Scholar
  164. Rana, K.J. (1990) Influence of incubation temperature on Oreochromis niloticus (L.) eggs and fry. I. Gross embryology, temperature tolerance and rates of embryonic development. Aquaculture 87, 165-181.Google Scholar
  165. Rask, M. (1983) The effect of low pH on perch, Perca fluviatilis L. I. Effect of low pH on the development of eggs of perch. Ann. Zool. Fenn. 20, 73-76.Google Scholar
  166. Reznichenko, P.N., Kotlyarevskaya, N.V. and Gulidov, M.V. (1962) Effect of constant incubation temperature on survival of roach eggs. In: Disler, N.N. (ed.), Egg Development of Some Fishes and Amphibians in Relation to Their Ecology. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 40, pp. 247-253 (in Russian).Google Scholar
  167. Richards, W.J. (1976) Some comments on Balon's terminology of fish developmental intervals. J. Fish Res. Bd Can.33, 1253-1254.Google Scholar
  168. Rojas-Beltran, R. and Gillet, C. (1995) The quality of eggs and larvae of whitefish Coregonus lavaretus L. from Lake Léman: effects of female origin. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 46, 309-314.Google Scholar
  169. Rombough, P.J. (1985) Initial egg weight, time to maximum alevin wet weight, and optimal ponding times for chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 42, 287-291.Google Scholar
  170. Rombough, P.J. (1988) Respiratory gas exchange, aerobic metabolism, and effects of hypoxia during early life. In: Hoar, W.S. and Randall, D.J. (eds.), Fish Physiology, Vol. 11A, The Physiology of Developing Fish. Academic Press, London, pp. 59-161.Google Scholar
  171. Rothbard, S. (1981) Induced reproduction in cultivated cyprinids. The common carp and the group of Chinese carps: 1. The technique of induction, spawning and hatching. Bamidgeh 33, 103-121.Google Scholar
  172. Ryzhkov, L.P. (1976) Morpho-Physiological Peculiarities and Transformation of Matter and Energy in Early Development of Freshwater Salmonid Fishes. Kareliya, Petrozavodsk, 288 pp. (in Russian).Google Scholar
  173. Sapota, M.R. (1999) Gonad development and embryogenesis of Notothenia coriiceps from South Shetlands-Antarctica. Polar Biol. 22, 164-168.Google Scholar
  174. Sarig, S. (1966) Synopsis of biological data on common carp, Cyprinus carpio (Linnaeus 1758) (Near East and Europe). F.A.O. Fish. Synopses 31.2, 35 pp.Google Scholar
  175. Sayer, M.D.J., Reader, J.P. and Dalziel, T.R.K. (1993) Freshwater acidification: effects on the early life stages of fish. Rev. Fish Biol. Fish. 3, 95-132.Google Scholar
  176. Shelton, W.L. and Rothbard, S. (1993) Determination of the developmental duration (?0) for ploidy manipulation in carps. Bamidgeh 45, 73-81.Google Scholar
  177. Shireman, J.V. and Smith, C.R. (1983) Synopsis of biological data on the grass carp, Ctenopharyngodon idella (Cuvier and Valenciennes, 1844). F.A.O. Fish. Synopses 135, 86 pp.Google Scholar
  178. Shirota, A. (1970) Studies on the mouth size of fish larvae. Bull. Jap. Soc. Scient. Fish. 36, 353-368.Google Scholar
  179. S?omi?ska, I., Wilko?ska, H. and Jezierska, B. (1995) Comparison of vendace eggs incubation from different lakes. Komunikaty Rybackie 1, 8-10 (in Polish).Google Scholar
  180. Smirnova, E.N. (1957a) Characteristics of development of the Kuban vimba (Vimba vimba) during embryonic and larval periods of life. In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 20, pp. 71-94 (in Russian).Google Scholar
  181. Smirnova, E.N. (1957b) Ecomorphological characteristics of development of the Black Sea Roach Rutilus frisii (Nordmann). In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 20, pp. 95-120 (in Russian).Google Scholar
  182. Smirnova, E.N. (1961) Ecomorphological characteristics of development of Rutilus frisii kutum Kamensky. In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologii i Fiziologii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 33, pp. 3-29 (in Russian).Google Scholar
  183. Smirnova, E.N. (1962) Embryonic and larval development of shemaya, Chalcalburnus chalcoides schischkovi (Drensk.) from Kuban River. In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologii i Fiziologii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR, Vol. 33, pp. 30-62 (in Russian).Google Scholar
  184. Smith, S. (1958) Yolk utilization in fishes. In: Rudnick, D. (ed.), Embryonic Nutrition. University of Chicago Press, Chicago, pp. 33-53.Google Scholar
  185. Smol'yanov, I.I. (1957) Development of Stenodus leucichthys leucichthys Güld., Stenodus leucichthys nelma Pall. and Coregonus lavaretus nelmuschka Pravdin. In: Kryzhanovskij, S.G. (ed.), Raboty po Ekologicheskoj Morfologii Ryb. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR 20, 232-293 (in Russian).Google Scholar
  186. Spannhof, L. and Pavlov, D.A. (1984) Einfluss von Temperatur und Salinität auf morphologische und physiologische Parameter der Reegenbogenforelle (Salmo gairdneri) während der Embryonalenentwicklung. Fischerei-Forschung 22, 67-73.Google Scholar
  187. Swift, D. (1965) Effect of temperature on mortality and rate of development of the eggs of pike and perch. Nature 206, 528.Google Scholar
  188. Takii, K., Nakamura, M., Tanaka, Y. and Kumai, H. (1995) Diluted rotifer, Brachionus plicatilis (Muller), extract as culture medium stimulates hatching of red sea bream, Pagrus major (Temminck & Schlegel). Aquacult. Res. 26, 243-247.Google Scholar
  189. Takii, K., Seoka, M., Nakamura, M., Tanaka, Y. and Kumai, H. (1997) Amino acids stimulate hatching of red sea bream, Pagrus major. Suizanshoku 45, 109-113.Google Scholar
  190. Ta?ski, A., Korzelecka, A., Bonis?awska, M., Winnicki, A. and Formicki, K. (2000) New data on morphomechanical changes during embryogenesis of pike (Esox lucius L.). Folia Univ. Agric. Stetin. Piscaria 214(27), 207-214.Google Scholar
  191. Tashiro, F., Tachikawa, W., Kamata, T., Tamura, E., Aoe, H. and Yabe, K. (1974) Rainbow Trout (Fish Culture Course, No. 10). Tokyo: Midori Shobo.Google Scholar
  192. Toetz, D.W. (1966) The change from endogenous to exogenous sources of energy in bluegill sunfish larvae. Invest. Indiana Lakes and Streams 7, 115-146.Google Scholar
  193. Valtonen, T. and Laitinen, M. (1988) Acid stress in respect to calcium and magnesium concentrations in the plasma of perch during maturation and spawning. Environ. Biol. Fishes 22, 147-154.Google Scholar
  194. Vasnetsov, V.V. (1953) Developmental stages of bony fishes. In: Pavlovskij, E.N. (ed.), Ocherki po Obshchim Voprosam Ikhtiologii. Akademiya Nauk Press, Moscow, pp. 207-217 (in Russian).Google Scholar
  195. Vasnetsov, V.V., Eremeeva, E.F., Lange, N.O., Dmitrieva, E.N. and Braginskaya, R. Ya. (1957) Developmental stages of commercial fishes of Volga and Don-Abramis brama, Cyprinus carpio, Rutilus rutilus caspicus, Rutilus rutilus heckeli and Lucioperca lucioperca. Tr. Inst. Morfol. Zhivotn. Akad. Nauk SSSR 16, 7-76 (in Russian).Google Scholar
  196. Velsen, F.P.J. (1987) Temperature and incubation in Pacific salmon and rainbow trout: compilation of data on median hatching time, mortality and embryonic staging. Can. Data Rep. Fish. Aquat. Sci. 625, 58 pp.Google Scholar
  197. Verreth, J. (1994) Nutritional and Related Ontogenetic Aspects in Larvae of the African Catfish, Clarias gariepinus. DSc thesis, Wageningen Agricultural University, Wageningen, 203 pp.Google Scholar
  198. Voskoboinikova, O.S. (1994) Individual developmental rate of skeleton in eleven nototheniid spacies (Nototheniidae). Vopr. Ikhtiol. 34, 501-508 (in Russian).Google Scholar
  199. Voskoboinikova, O.S. (1998) Development of skeleton in the ontogeny of Harpagifer antarcticus (Harpagiferidae, Notothenioidei). Vopr. Ikhtiol. 38, 469-478 (in Russian).Google Scholar
  200. Wanzenböck, J and Wanzenböck, S. (1993) Temperature effects on incubation time and growth of juvenile whitefin gudgeon, Gobio albipinnatus Lukasch. J. Fish Biol. 42, 35-46.Google Scholar
  201. Ware, D.M. (1975) Relation between egg size, growth and natural mortality of larval fish. J. Fish. Res. Bd. Can. 32, 2503-2512.Google Scholar
  202. Weltzien, F.-A., Planas, M. and Fyhn, H.J. (1999) Temperature dependency of early growth of turbot (Scophthalmus maximus L.) and its implications for developmental progress. J. Exp. Mar. Biol. Ecol. 242, 201-210.Google Scholar
  203. White, M.G., North, A.W., Twelves, E.L. and Jones, S. (1982) Early development of Notothenia neglecta from the Scotia Sea, Antarctica. Cybium 6, 43-51.Google Scholar
  204. White, M.G. and Burren, P. (1992) Reproduction and larval growth of Harpagifer antarcticus Nybelin (Pisces, Notothenioidei). Antarct. Sci. 4, 421-430.Google Scholar
  205. Winberg, G.G. (1971) Methods for the Estimation of Production of Aquatic Animals. Academic Press, London, 175 pp.Google Scholar
  206. Winberg, G.G. (1983) Van't Hoff temperature coefficient and Arrhenius equation in biology. Zh. Obshch. Biol. 44, 31-42 (in Russian).Google Scholar
  207. Winberg, G.G. (1987) Effect of temperature on the rate of ontogenetic development. In: Alimov A.F. (ed.), Tr. Zool. Inst. Akad. Nauk SSSR, Vol. 165, pp. 5-34. (in Russian).Google Scholar
  208. Wilko?ska, H., ?uromska, H. and Backiel, T. (1994) Reproductive traits and their effect on embryos and larvae of vendace, Coregonus albula (L.). Part II. Egg incubation. Arch. Pol. Fish. 2, 5-19.Google Scholar
  209. Winnicki, A. and Korzelecka, A. (1997) Morphomechanical aspects of the development of the bleak (Alburnus alburnus L.). Acta Ichthyol. Piscatoria 27(2), 17-27.Google Scholar
  210. Wootton, R.J. (1990) Ecology of Teleost Fishes. Chapman & Hall, London, 404 pp.Google Scholar
  211. Yamashita, Y. and Aoyama, T. (1985) Hatching time, yolk sac absorption, onset of feeding, and early growth of the Japanese sand eel Ammodytes personatus. Bull. Jap. Soc. Scient. Fish. 51, 1777-1780.Google Scholar
  212. Yarzhombek, A.A. (ed.) (1986) Fish Physiology Tables. Agropromizdat, Moscow, 192 pp. (in Russian).Google Scholar
  213. Zar, J.H. (1984) Biostatistical Analysis, 2nd edn. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  214. Zhukinskij, V.N. (1986) Influence of Abiotic Factors on Variability and Viability of Fishes During Early Ontogenesis. Agropromizdat, Moscow, 245 pp. (in Russian)Google Scholar
  215. ?uromska, H. (1982) Egg mortality and its causes in Coregonus albula (L.) and Coregonus lavaretus (L.) in two Masurian lakes. Pol. Arch. Hydrobiol. 29, 29-69.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ewa Kamler
    • 1
  1. 1.Pond Fishery DepartmentInland Fisheries Institute, ŻabieniecPiasecznoPoland

Personalised recommendations