Skip to main content
Log in

Convergence Analysis of Perturbed Feasible Descent Methods

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We develop a general approach to convergence analysis of feasible descent methods in the presence of perturbations. The important novel feature of our analysis is that perturbations need not tend to zero in the limit. In that case, standard convergence analysis techniques are not applicable. Therefore, a new approach is needed. We show that, in the presence of perturbations, a certain ε-approximate solution can be obtained, where ε depends linearly on the level of perturbations. Applications to the gradient projection, proximal minimization, extragradient and incremental gradient algorithms are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, Z. Q., and Tseng, P., Error Bounds and Convergence Analysis of Feasible Descent Methods: A General Approach, Annals of Operations Research, Vol. 46, pp. 157–178, 1993.

    Google Scholar 

  2. Goldstein, A. A., Convex Programming in Hilbert Space, Bulletin of the American Mathematical Society, Vol. 70, pp. 709–710, 1964.

    Google Scholar 

  3. Levitin, E. S., and Polyak, B. T., Constrained Minimization Methods, USSR Computational Mathematics and Mathematical Physics, Vol. 6, pp. 1–50, 1965.

    Google Scholar 

  4. Martinet, B., Regularisation d'Inéquations Variationelles per Approximations Successives, RAIRO-Operations Research, Vol. 4, pp. 154–159, 1970.

    Google Scholar 

  5. Rockafellar, R. T., Monotone Operators and the Proximal Point Algorithm, SIAM Journal on Control and Optimization, Vol. 14, pp. 877–898, 1976.

    Google Scholar 

  6. Korpelevich, G. M., The Extragradient Method for Finding Saddle Points and Other Problems, Matecon, Vol. 12, pp. 747–756, 1976.

    Google Scholar 

  7. Marcotte, P., Application of Khobotov's Algorithm to Variational Inequalities and Network Equilibrium Problems, Information Systems and Operational Research, Vol. 29, pp. 258–270, 1991.

    Google Scholar 

  8. Solodov, M. V., Incremental Gradient Algorithms with Stepsizes Bounded Away from Zero, Technical Report B-096, Instituto de Matematica Pura e Aplicada, Jardim Botanico, Rio de Janeiro, Brazil, 1995.

    Google Scholar 

  9. Mangasarian, O. L., Convergence of Iterates of an Inexact Matrix Splitting Algorithm for the Symmetric Monotone Linear Complementarity Problem, SIAM Journal on Optimization, Vol. 1, pp. 114–122, 1991.

    Google Scholar 

  10. Luo, Z. Q., and Tseng, P., Error Bound and Convergence Analysis of Matrix Splitting Algorithms for the Affine Variational Inequality Problem, SIAM Journal on Optimization, Vol. 2, pp. 43–54, 1992.

    Google Scholar 

  11. Li, W., Remarks on Matrix Splitting Algorithms for Symmetric Linear Complementarity Problems, SIAM Journal on Optimization, Vol. 3, pp. 155–163, 1993.

    Google Scholar 

  12. Solodov, M. V., New Inexact Parallel Variable Distribution Algorithms, Computational Optimization and Applications, (to appear).

  13. Dembo, R. S., Eisenstat, S. C., and Steihaug, T., Inexact Newton Methods, SIAM Journal on Numerical Analysis, Vol. 19, pp. 400–408, 1982.

    Google Scholar 

  14. Polyak, B. T., Introduction to Optimization. Optimization Software, Publications Division, New York, New York, 1987.

    Google Scholar 

  15. Polak, E., Computational Methods in Optimization: A Unified Approach, Academic Press, New York, New York, 1971.

    Google Scholar 

  16. Boggs, P. T., and Dennis, J. E., A Stability Analysis for Perturbed Nonlinear Iterative Methods, Mathematics of Computation, Vol. 30, pp. 199–215, 1976.

    Google Scholar 

  17. Mangasarian, O. L., and Solodov, M. V., Serial and Parallel Backpropagation Convergence via Nonmonotone Perturbed Minimization, Optimization Methods and Software, Vol. 4, pp. 103–116, 1994.

    Google Scholar 

  18. Mangasarian, O. L., and Solodov, M. V., Backpropagation Convergence via Deterministic Nonmonotone Perturbed Minimization, Neural Information Processing Systems, Edited by G. Tesauro, J. D. Cowan, and J. Alspector, Morgan Kaufmann Publishers, San Francisco, California, Vol. 6, pp. 383–390, 1994.

    Google Scholar 

  19. Zavriev, S. K., Convergence Properties of the Gradient Method under Variable Level Interference, USSR Computational Mathematics and Mathematical Physics, Vol. 30, pp. 997–1007, 1990.

    Google Scholar 

  20. Solodov, M. V., and Zavriev, S. K., Error-Stability Properties of Generalized Gradient-Type Algorithms, Mathematical Programming Technical Report 94-05, Computer Science Department, University of Wisconsin, Madison, Wisconsin, 1994 (Revised 1995).

    Google Scholar 

  21. Luo, Z. Q., and Tseng, P., Analysis of an Approximate Gradient Projection Method with Applications to the Backpropagation Algorithm, Optimization Methods and Software, Vol. 4, pp. 85–101, 1994.

    Google Scholar 

  22. Mangasarian, O. L., Nonlinear Programming, McGraw-Hill, New York, New York, 1969.

    Google Scholar 

  23. Robinson, S. M., Some Continuity Properties of Polyhedral Multifunctions, Mathematical Programming Study, Vol. 14, pp. 206–214, 1981.

    Google Scholar 

  24. Luo, Z. Q., Mangasarian, O. L., Ren, J., and Solodov, M. V., New Error Bounds for the Linear Complementarity Problem, Mathematics of Operations Research, Vol. 19, pp. 880–892, 1994.

    Google Scholar 

  25. Pang, J. S., A Posteriori Error Bounds for the Linearly-Constrained Variational Inequality Problem, Mathematics of Operations Research, Vol. 12, pp. 474–484, 1987.

    Google Scholar 

  26. Luo, X. D., and Tseng, P., On Global Projection-Type Error Bound for the Linear Complementarity Problem, Linear Algebra and Its Applications, (to appear).

  27. Zangwill, W. I., Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.

    Google Scholar 

  28. Gafni, E. M., and Bertsekas, D. P., Two-Metric Projection Methods for Constrained Optimization, SIAM Journal on Control and Optimization, Vol. 22, pp. 936–964, 1984.

    Google Scholar 

  29. Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

    Google Scholar 

  30. Mangasarian, O. L., Mathematical Programming in Neural Networks, ORSA Journal on Computing, Vol. 5, pp. 349–360, 1993.

    Google Scholar 

  31. Bertsekas, D. P., Incremental Least Squares Methods and the Extended Kalman Filter, SIAM Journal on Optimization, Vol. 6, pp. 807–822, 1996.

    Google Scholar 

  32. Bertsekas, D. P., A New Class of Incremental Gradient Methods for Least Squares Problems, Report, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1995.

    Google Scholar 

  33. Luo, Z. Q., On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward Networks, Neural Computation, Vol. 3, pp. 226–245, 1991.

    Google Scholar 

  34. Tseng, P., Incremental Gradient(-Projection) Method with Momentum Term and Adaptive Stepsize Rule, Report, Department of Mathematics, University of Washington, Seattle, Washington, 1995.

    Google Scholar 

  35. Solodov, M. V., and Tseng, P., Modified Projection-Type Methods for Monotone Variational Inequalities, SIAM Journal on Control and Optimization, Vol. 34,No. 5, 1996.

  36. Tseng, P., On Linear Convergence of Iterative Methods for the Variational Inequality Problem, Journal of Computational and Applied Mathematics, Vol. 60, pp. 237–252, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solodov, M.V. Convergence Analysis of Perturbed Feasible Descent Methods. Journal of Optimization Theory and Applications 93, 337–353 (1997). https://doi.org/10.1023/A:1022602123316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022602123316

Navigation