Skip to main content
Log in

c-Axis Transport in a Normal-State Bilayer Cuprate and Relation to Pseudogap

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We study the effect of interband transitions on the normal-state optical conductivity, dc resistivity, and thermal conductivity along the c-axis, for a plane-chain bilayer cuprate coupled by a perpendicular hopping matrix element (t⊥). When t⊥ is small, the c-axis dc resistivity shows a characteristic upturn as the temperature is lowered, and the c-axis optical conductivity develops a pseudogap at low frequencies. As t⊥ is increased, intraband transitions start to dominate and a more conventional response is obtained. Similar pseudogap behavior is predicted in the thermal conductivity for which strong depression at low temperature is found. Analytical results for a simple plane-plane bilayer are also given, including the frequency sum rule of the optical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. A. Atkinson and J. P. Carbotte, Phys. Rev. B 55, 3230 (1997).

    Google Scholar 

  2. D. A. Bonn, P. Dosanjh, R. Liang, and W. N. Hardy, Phys. Rev. Lett. 68, 2390 (1992).

    Google Scholar 

  3. K. Zhang et al., Phys. Rev. Lett. 73, 2484 (1994).

    Google Scholar 

  4. D. A. Bonn et al., J. Phys. Chem. Solids 56, 1941 (1995).

    Google Scholar 

  5. Y. Zha, S. L. Cooper, and D. Pines, Phys. Rev. B 53, 8253 (1996).

    Google Scholar 

  6. T. A. Friedmann, M. W. Rabin, J. Giapintzakis, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 42, 6217 (1990).

    Google Scholar 

  7. U. Welp, S. Fleshler, W. K. Kwok, J. Downey, Y. Fang, G. W. Crabtree, and J. Z. Liu, Phys. Rev. B 42, 10189 (1990).

    Google Scholar 

  8. Y. Iye, in Physical Properties of High-Temperature Superconductors III, D. M. Ginsberg, ed. (World Scientific, Singapore, 1992), p. 285.

    Google Scholar 

  9. R. Gagnon, C. Lupien, and L. Taillefer, Phys. Rev. B 50, 3458 (1994).

    Google Scholar 

  10. H. Takei, H. Asaoka, Y. Iye, and H. Takeya, Jpn. J. Appl. Phys. 30, L1102 (1991).

    Google Scholar 

  11. Y. Iye et al., Physica C 153–155, 26 (1988).

    Google Scholar 

  12. D. A. Brawner, Z. Z. Wang, and N. P. Ong, Phys. Rev. B 40, 9329 (1989).

    Google Scholar 

  13. K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, Phys. Rev. B 50, 6534 (1994).

    Google Scholar 

  14. A. G. Rojo and K. Levin, Phys. Rev. B 48, R16861 (1993).

    Google Scholar 

  15. M. J. Graf, D. Rainer, and J. A. Sauls, Phys. Rev. B 47, 12089 (1993).

    Google Scholar 

  16. A. J. Leggett, Braz. J. Phys. 22, 129 (1992).

    Google Scholar 

  17. A. A. Abrikosov, Physica C 258, 53 (1996).

    Google Scholar 

  18. R. J. Radtke, V. N. Kostur, and K. Levin, Phys. Rev. B 53, R522 (1996).

    Google Scholar 

  19. N. Kumar and A. M. Jayannavar, Phys. Rev. B 45, 5001 (1992).

    Google Scholar 

  20. P. W. Anderson, Science 268, 1154 (1995).

    Google Scholar 

  21. S. L. Cooper and K. E. Gray, in Physical Properties of High-Temperature Superconductors IV, D. M. Ginsberg, ed. (World Scientific, Singapore, 1994), p. 61.

    Google Scholar 

  22. R. J. Radtke and K. Levin, Physica C 250, 282 (1995).

    Google Scholar 

  23. G. D. Mahan, Many-Particle Physics, 2nd edn. (Plenum, New York, 1990).

    Google Scholar 

  24. W. A. Atkinson and J. P. Carbotte, Phys. Rev. B 52, 10601 (1995).

    Google Scholar 

  25. V. Ambegaokar and A. Griffin, Phys. Rev. 137, A1151 (1965).

    Google Scholar 

  26. D. J. Scalapino, in Superconductivity Vol. 1, R. D. Parks, ed. (Marcel Dekker, New York, 1969), p. 549.

    Google Scholar 

  27. C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

    Google Scholar 

  28. See, for example, N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W.C., Atkinson, W.A. & Carbotte, J.P. c-Axis Transport in a Normal-State Bilayer Cuprate and Relation to Pseudogap. Journal of Superconductivity 11, 305–315 (1998). https://doi.org/10.1023/A:1022600421541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022600421541

Navigation