Skip to main content
Log in

String theory, cosmology and varying constants

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In string theory the coupling `constants' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) mass less scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a space time variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently `observed' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrow, J.D.: gr-qc/0209080.

  • Bekenstein, J.D.: 1982, Phys. Rev. D 25, 1527.

    Article  MathSciNet  ADS  Google Scholar 

  • Damour, T., Gibbons, G.W. and Gundlach, C.: 1990, Phys. Rev. Lett. 64, 123.

    Article  ADS  Google Scholar 

  • Damour, T. and Nordtvedt, K.: 1993, Phys. Rev. Lett. 70, 2217; Phys. Rev. D 48, 3436.

    Article  ADS  Google Scholar 

  • Damour, T. and Polyakov, A.M.: 1994, Nucl. Phys. B 423, 532; Gen. Rel. Grav. 26, 1171.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Damour, T. and Vilenkin, A.: 1996, Phys. Rev. D 53, 2981.

    Article  ADS  Google Scholar 

  • Damour, T. and Dyson, F.: 1996, Nucl. Phys. B 480, 37.

    Article  ADS  Google Scholar 

  • Damour, T.: 2000, in: J. Tran Than Van et al. (ed.) Gravitational Waves and Experimental Gravity, World Publishers, Hanoi, pp. 357‐363; gr-qc/9904032.

    Google Scholar 

  • Damour, T., Piazza, F. and Veneziano, G.: 2002a, Phys. Rev. Lett. 89, 081601.

  • Damour, T., Piazza, F. and Veneziano, G.: 2002b, Phys. Rev. D 66, 046007.

  • Fujii, Y. et al.: 2000, Nucl. Phys. B573, 377.

    Article  ADS  Google Scholar 

  • Gasperini, M., Piazza, F. and Veneziano, G.: 2002, Phys. Rev. D 65, 023508.

    Google Scholar 

  • Linde, A.: 1990, Particle Physics and Inflationary Cosmology, Harwood, Chur.

  • Murphy, M. et al.: 2001, MNRAS 327, 1208.

    Article  ADS  Google Scholar 

  • Olive, K. et al.: 2002, Phys. Rev. D 66, 045022.

  • Olive, K.A. and Pospelov, M.: 2002, Phys. Rev. D 65, 85044.

    Article  ADS  Google Scholar 

  • Perlmutter, S. et al.: 1999, Astrophys. J. 517, 565.

    Article  ADS  Google Scholar 

  • Prestage, J.D., Tjoelker, R.L. and Maleki, L.: 1995, Phys. Rev. Lett. 74, 3511.

    Article  ADS  Google Scholar 

  • Review of Particle Physics: 2002a, The review of experimental tests of gravitational theory (Chapter 17), Phys. Rev. D 66, 010001, available on http://pdg.lbl.gov/

  • Review of Particle Physics: 2002b, The review of global cosmological parameters (Chapter 20), Phys. Rev. D 66, 010001, available on http://pdg.lbl.gov/.

  • Riess, A. et al.: 1998, Astronom. J. 116, 1009.

    Article  ADS  Google Scholar 

  • Salomon, C. et al.: 2001, in: E. Arimondo and M. Inguscio (eds.), Cold Atom Clocks on Earth and in Space, Proceedings of the 17th Int. Conf. on Atomic Physics, World Scientific, Singapore, p. 23.

    Google Scholar 

  • Sandvik, H.B., Barrow, J.D. and Magueijo, J.: 2002, Phys. Rev. Lett. 88, 031302.

    Google Scholar 

  • Sortais, Y. et al.: 2001, Physica Scripta 95, 50.

    Article  Google Scholar 

  • Su, Y. et al.: 1994, Phys. Rev. D 50, 3614.

    ADS  Google Scholar 

  • Taylor, T.R. and Veneziano, G.: 1988, Phys. Lett. B 213, 450.

    ADS  Google Scholar 

  • Touboul, P. et al.: 2001, C.R. Acad. Sci. Paris 2 (série IV) 1271.

    Google Scholar 

  • Veneziano, G.: 2002, J. High Energy Phys. 06, 051.

    Google Scholar 

  • Webb, J.K. et al.: 2001, Phys. Rev. Lett. 87, 091301.

  • Will, C.M.: 2001, Living Rev. Rel. 4, 4.

    MATH  MathSciNet  Google Scholar 

  • Witten, E.: 1984, Phys. Lett. B 149, 351.

    Article  MathSciNet  ADS  Google Scholar 

  • Worden, P.W.: 1995, in: R.T. Jantzen and G. MacKeiser (eds.), Proc. 7th Marcel Grossmann Meeting on General Relativity, World Scientific, Singapore, pp. 1569‐1573.

    Google Scholar 

  • Uzan, J.P.: Rev. Mod. Phys., to appear; hep-ph/0205340.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damour, T. String theory, cosmology and varying constants. Astrophysics and Space Science 283, 445–456 (2003). https://doi.org/10.1023/A:1022596316014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022596316014

Keywords

Navigation