Skip to main content
Log in

Internalization of Glial Cell-Derived Neurotrophic Factor Receptor GFRα1 in the Absence of the Ret Tyrosine Kinase Coreceptor

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Glial cell-derived neurothrophic factor (GDNF) interacts with a cell surface receptor, GFRα1, that is linked via a glycosyl-phosphatidylinositol (GPI) lipid to the cell membrane. The neurotrophic activities of GDNF are mediated by binding to GFRα1 and further interaction of the GDN–GFRα1 complex with a coreceptor tyrosine kinase encoded by the c-Ret protooncogene. There is also evidence for the existence of cell signaling by GDNF and GFRα1 in the absence of Ret.

2. To further delineate the Ret-dependent and -independent functions of GDNF, cellular internalization of GDNF and GFRα1 was examined in cells lines and primary neurons.

3. Relative to other GPI-anchored receptors, efficient endocytosis ( 30–40% of total surface-bound ligand internalized after 2 min) of GNDF and GFRα1 was observed in neuroblastoma and transfected-fibroblast cell lines that lack Ret. Primary hippocampal neurons from transgenic mice that express a wild-type GFRα1 together with a mutant, tyrosine kinase-inactive Ret also internalized GDNF efficiently ( 20% of total surface-bound ligand internalized after 2 min). We also observed a ligand dependence for GFRα1 internalization in the cell lines that lack Ret. Furthermore, a comparison in the presence and absence of Ret indicates that this coreceptor tyrosine kinase slows internalization at early time points.

4. The data suggest different mechanisms of internalization for GDNF–GFRα1 in the absence and presence of the Ret coreceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airaksinen, M. S., Titievsky, A., and Saarma, M. (1999). GDNF family neurotrophic factor signaling: Four masters, one servant? Mol. Cell. Neurosci. 13:313–325.

    Google Scholar 

  • Alberti, L., Borrello, M. G., Ghizzoni, S., Torriti, F., Rizzetti, M. G., and Pierotti, M. A. (1998). Grb2 binding to the different isoforms of Ret tyrosine kinase. Oncogene 17:1079–1087.

    Google Scholar 

  • Arighi, E., Alberti, L., Torriti, F., Ghizzoni, S., Rizzetti, M. G., Pelicci, G., Pasini, B., Bongarzone, I., Piutti, C., Pierotti, M. A., and Borrello, M. G. (1997). Identification of Shc docking site on Ret tyrosine kinase. Oncogene 14:773–782.

    Google Scholar 

  • Asai, N., Murakami, H., Iwashita, T., and Takahashi, M. (1996). A mutation at tyrosine 1062 in MEN2A-Ret and MEN2B-Ret impairs their transforming activity and association with Shc adaptor proteins. J. Biol. Chem. 271:17644–17649.

    Google Scholar 

  • Baloh, R. H., Gorodinsky, A., Golden, J. P., Tansey, M. G., Keck, C. L., Popescu, N. C., Johnson, E. M., Jr., and Milbrandt, J. (1998a). GFRα3 is an orphan member of the GDNF/neurturin/persephin receptor family. Proc. Natl. Acad. Sci. U.S.A. 95:5801–5806.

    Google Scholar 

  • Baloh, R. H., Tansey, M. G., Golden, J. P., Creedon, D. J., Heuckeroth, R. O., Keck, C. L., Zimonjic, D. B., Popescu, N. C., Johnson, E. M., Jr., and Milbrandt, J. (1997). TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron 18:793–802.

    Google Scholar 

  • Baloh, R. H., Tansey, M. G., Lampe, P. A., Fahrner, T. J., Enomoto, H., Simburger, K. S., Leitner, M. L., Araki, T., Johnson, E. M., and Milbrandt, J. (1998b). Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3-RET receptor complex. Neuron 21:1291–1302.

    Google Scholar 

  • Borrello, M. G., Alberti, L., Arighi, E., Bongarzone, L., Battistini, C., Bardelli, A., Pasini, B., Piutti, C., Rizzetti, M. G., Mondellini, P., Radice, M. T., and Pierotti, M. A. (1996). The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cγ. Mol. Cell. Biol. 16:2151–2163.

    Google Scholar 

  • Creedon, D. J., Tansey, M. G., Baloh, R. H., Osborne, P. A., Lampe, P. A., Fahrner, T. J., Heuckeroth, R. O., Milbrandt, J., and Johnson, E. M., Jr. (1997). Neurturin shares receptors and signal transduction pathways with glial cell line-derived neurotrophic factor in sympathetic neurons. Proc. Natl. Acad. Sci. U.S.A. 94:7018–7023.

    Google Scholar 

  • Daaka, Y., Luttrell, L. M., Ahn, S., Della Rocca, G. J., Ferguson, S. S. G., Caron, M. G., and Lefkowitz, R. J. (1998). Essential role for G protein-coupled receptor endocytosis in the activaton of mitogen activated protein kinase. J. Biol. Chem. 273:685–688.

    Google Scholar 

  • Durbec, P., Marcos-Gutierrez, C. V., Kilkenny, C., Grigoriou, M., Wartiowaara, K., Suvanto, P., Smith, D., Ponder, B., Costantini, F., Saarma, M., Sariola, H., and Pachnis, V. (1996). GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:789–793.

    Google Scholar 

  • Durick, K., Gill, G. N., and Taylor, S. S. (1996). Mitogenic signaling by Ret/ptc2 requires association with enigma via a LIM domain. J. Biol. Chem. 271:12691–12694.

    Google Scholar 

  • Durick, K., Gill, G. N., and Taylor, S. S. (1998). She and Enigma are both required for mitogenic signaling by Ret/pt2. Mol. Cell. Biol. 18:2298–2308.

    Google Scholar 

  • Friedrichson, T., and Kurzchalia, T. V. (1998). Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394:802–805.

    Google Scholar 

  • Green, J. M., Schreiber, A. D., and Brown, E. J. (1997). Role for a glycan phosphoinositol anchor in Fc gamma receptor synergy. J. Cell Biol. 139:1209–1217.

    Google Scholar 

  • Hiltunen, J. O., Laurikainen, A., Vakeva, A., Meri, S., and Saarma, M. (2001). Nerve growth factor and brain-derived neurotrophic factor mRNAs are regulated in distinct cell populations of rat heart after ischaemia and reperfusion. J. Pathol. 194:247–253.

    Google Scholar 

  • Hiwasa, T., Kondo, K., Hishiki, T., Koshizawa, S., Umezawa, K., and Nakagawara, A. (1997). GDNF–induced neurite formation was stimulated by protein kinase inhibitors and suppressed by Ras inhibitors. Neurosci. Lett. 238:115–118.

    Google Scholar 

  • Horger, B. A., Nishimura, M. C., Armanini, M. P., Wang, L. C., Poulsen, K. T., Rosenblad, C., Kirik, D., Moffat, B., Simmons, L., Johnson, E. M., Jr., Milbrandt, J., Rosenthal, A., Bjorklund, A., Vandlen, R. A., Hynes, M. A., and Phillips, H. S. (1998). Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J. Neurosci. 18:4929–4937.

    Google Scholar 

  • Iwashita, T., Asai, N., Murakami, H., Matsuyama, M., and Takahashi, M. (1996). Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutation. Oncogene 12:481–487.

    Google Scholar 

  • Jings, S. Q., Spencer, T., Miller, K., Hopkins, C., and Trowbridge, I. S. (1990). Role of the human transferrin receptor cytoplasmic domain in endocytosis: Localization of a specific signal sequence for internalization. J. Cell. Biol. 110(2):283–294.

    Google Scholar 

  • Jing, S., Wen, D., Yu, Y., Holst, P. L., Luo, Y., Fang, M., Tamir, R., Antonio, L., Hu, Z., Cupples, R., Louis, J. C., Hu, S., Altrock, B. W., and Fox, G. M. (1996). GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85:1113–1124.

    Google Scholar 

  • Jing, S., Yu, Y., Fang, M., Hu, Z., Holst, P. L., Boone, T., Delaney, J., Schultz, H., Zhou, R., and Fox, G. M. (1997). GFRα-2 and GFRα-3 are two new receptors for ligands of the GDNF family. J. Biol. Chem. 272:33111–33117.

    Google Scholar 

  • Kaplan, D. R., and Miller, F. D. (1997). Signal transduction by the neurotrophin receptors. Curr. Opin. Cell Biol. 9:213–221.

    Google Scholar 

  • Klein, R. D., Sherman, D., Ho, W. H., Stone, D., Bennett, G. L., Moffat, B., Vandlen, R., Simmons, L., Gu, Q., Hongo, J. A., Devaux, B., Poulsen, K., Armanini, M., Nozaki, C., Asai, N., Goddard, A., Phillips, H., Henderson, C. E., Takahashi, M., and Rosenthal, A. (1997). A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature 387:717–721.

    Google Scholar 

  • Kotzbauer, P. T., Lampe, P. A., Heuckeroth, R. O., Golden, J. P., Creedon, D. J., Johnson, E. M., Jr., and Milbrandt, J. (1996). Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470.

    Google Scholar 

  • Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F. (1993). GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132.

    Google Scholar 

  • Lindahl, M., Poteryaev, D., Yu, L., Arumae, U., Timmusk, T., Bongarzone, I., Aiello, A., Pierotti, M. A., Airaksinen, M. S., and Saarma, M. (2001). Human glial cell line-derived neurotrophic factor receptor alpha 4 is the receptor for persephin and is predominantly expressed in normal and malignant thyroid medullary cells. J. Biol. Chem. 276:9344–9351.

    Google Scholar 

  • Lorenzo, M. J., Gish, G. D., Houghton, C., Stonehouse, T. J., Pawson, T., Ponder, B. A., and Smith, D. P. (1997). RET alternate splicing influences the interaction of activated RET with the SH2 and PTB domains of Shc, and the SH2 domain of Grb2. Oncogene 14:763–771.

    Google Scholar 

  • Mayor, S., Sabharanjak, S., and Maxfield, F. R. (1998). Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 17:4626–4638.

    Google Scholar 

  • Milbrandt, J., de Sauvage, F. J., Fahrner, T. J., Baloh, R. H., Leitner, M. L., Tansey, M. G., Lampe, P. A., Heuckeroth, R. O., Kotzbauer, P. T., Simburger, K. S., Golden, J. P., Davies, J. A., Vejsada, R., Kato, A. C., Hynes, M., Sherman, D., Nishimura, M., Wang, L. C., Vandlen, R., Moffat, B., Klein, R. D., Poulsen, K., Gray, C., Garces, A., and Johnson, E. M., Jr. (1998). Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20:245–253.

    Google Scholar 

  • Naveilhan, P., ElShamy, W. E., and Ernfors, P. (1997). Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFRa after sciatic nerve lesion in the mouse. Eur. J. Neurosci. 9:1450–1460.

    Google Scholar 

  • Neet, K. E., and Campenot, R. B. (2001). Receptor binding, internalization, and retrograde transport of neurotrophic factors. Cell. Mol. Life Sci. 58(8):1021–1035.

    Google Scholar 

  • Ohiwa, M., Murakami, H., Iwashita, T., Asai, N., Iwata, Y., Imai, T., Funahashi, H., Takagi, H., and Takahashi, M. (1997). Characterization of Ret–Shc–Grb2 complex induced by GDNF, MEN 2A, and MEN 2B mutations. Biochem. Biophys. Res. Commun. 237:747–751.

    Google Scholar 

  • Pezeshki, G., Franke, B., and Engele, J. (2001). Evidence for a ligand specic signaling through GFRalpha-1, but not GFRalpha-2, in the absence of Ret. J. Neurosci. Res. 66:390–395.

    Google Scholar 

  • Pong, K., Xu, R. Y., Baron, W. F., Louis, J. C., and Beck, K. D. (1998). Inhibition of phosphatidylinositol 3-kinase activity blocks cellular differentiation mediated by glial cell line-derived neurotrophic factor in dopaminergic neurons. J. Neurochem. 71:1912–1919.

    Google Scholar 

  • Poteryaev, D., Titievsky, A., Sun, Y. F., Thomas-Crusells, J., Lindahl, M., Billaud, M., Arumae, U., and Saarma, M. (1999). GDNF triggers a novel ret-independent Src kinase family-coupled signaling via a GPI-linked GDNF receptor alpha1. FEBS Lett. 463:63–66.

    Google Scholar 

  • Saarma M. (2000). GDNF—A stranger in the TGF-beta superfamily? Eur. J. Biochem. 267:6968–6971.

    Google Scholar 

  • Sanicola, M., Hession, C., Worley, D., Carmillo, P., Ehrenfels, C., Walus, L., Robinson, S., Jaworski, G., Wei, H., Tizard, R., Whitty, A., Pepinsky, R. B., and Cate, R. L. (1997). Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc. Natl. Acad. Sci. U.S.A. 94:6238–6243.

    Google Scholar 

  • Schaefer, A. W., Kamiguchi, H., Wong, E. V., Beach, C. M., Landreth, G., and Lemmon, V. (1999). Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J. Biol. Chem. 274:37965–37973.

    Google Scholar 

  • Smythe, E., Redelmeier, T. E., and Schmid, S. L. (1992). Receptor-mediated endocytosis in semiintact cells. Methods Enzymol. 219:223–234.

    Google Scholar 

  • Treanor, J. J., Goodman, L., de Sauvage, F., Stone, D. M., Poulsen, K. T., Beck, C. D., Gray, C., Armanini, M. P., Pollock, R. A., Hefti, F., Phillips, H. S., Goddard, A., Moore, M. W., Buj-Bello, A., Davies, A. M., Asai, N., Takahashi, M., Vandlen, R., Henderson, C. E., and Rosenthal, A. (1996). Characterization of a multicomponent receptor for GDNF. Nature 382:80–83.

    Google Scholar 

  • Trupp, M., Arenas, E., Fainzilber, M., Nilsson, A. S., Sieber, B. A., Grigoriou, M., Kilkenny, C., Salazar-Grueso, E., Pachnis, V., Arumäe, U., Sariola, H., Saarma, M., and Ibáñez, C. (1996). Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–788.

    Google Scholar 

  • Trupp, M., Belluardo, N., Funakoshi, H., and Ibáñez, C. F. (1997). Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J. Neurosci. 17:3554–3567.

    Google Scholar 

  • Trupp, M., Raynoschek, C., Belluardo, N., and Ibáñez, C. F. (1998). Multiple GPI-anchored receptors control GDNF-dependent and independent activation of the c-ret receptor tyrosine kinase. Mol. Cell. Neurosci. 11:47–63.

    Google Scholar 

  • Trupp, M., Scott, R., Whittemore, S. R., and Ibanez, C. F. (1999). Ret-dependent and-independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J. Biol. Chem. 274:20885–20894.

    Google Scholar 

  • van Weering, D. H., and Bos, J. L. (1997). Glial cell line-derived neurotrophic factor induces Ret-mediated lamellipodia formation. J. Biol. Chem. 272:249–254.

    Google Scholar 

  • Varma, R., and Mayor, S. (1998). GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801.

    Google Scholar 

  • Vieira, A. V., Lamaze, C., and Schmid, S. L. (1996). Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089.

    Google Scholar 

  • Worby, C. A., Vega, Q. C., Zhao, Y., Chao, H. H. J., Seasholtz, A. F., and Dixon, J. E. (1996). Glial cell line-derived neurotrophic factor signals through the RET receptor and activates mitogen-activated protein kinase. J. Biol. Chem. 271:23619–23622.

    Google Scholar 

  • Xavier, R., Brennan, T., Li. Q., McCormack, C., and Seed, B. (1998). Membrane compartmentation is required for efficient T cell activation. Immunity 8:723–732.

    Google Scholar 

  • Xing, S., Furminger, T. L., Tong, Q., and Jhiang, S. M. (1998). Signal transduction pathways activated by RET oncoproteins in PC12 pheochromocytoma cells. J. Biol. Chem. 273:4909–4914.

    Google Scholar 

  • Ylikoski, J., Pirvola, K., Virkkala, J., Suvanto, P., Liang, X.-Q., Magal, E., Altschuler, R., Miller, J. M., and Saarma, M. (1998). Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hear. Res. 124:17–26.

    Google Scholar 

  • Yu, T., Scully, S., Yu, Y., Fox, G. M., Jing, S., and Zhou, R. (1998). Expression of GDNF family receptor components during development: Implications in the mechanisms of interaction. J. Neurosci. 18:4684–4696.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira, P., Thomas-Crusells, J. & Vieira, A. Internalization of Glial Cell-Derived Neurotrophic Factor Receptor GFRα1 in the Absence of the Ret Tyrosine Kinase Coreceptor. Cell Mol Neurobiol 23, 43–55 (2003). https://doi.org/10.1023/A:1022593001155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022593001155

Navigation