Skip to main content
Log in

Effects of Plant Identity and Chemical Constituents on the Efficacy of a Baculovirus Against Heliothis virescens

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Baculoviruses are arthropod-specific, dsDNA viruses primarily used to control lepidopteran pests. A limitation of the use of baculoviruses for pest control is that their efficacy is modifiable by host-plant chemicals. The levels of phenolic substrates and two foliar oxidative enzymes, peroxidase (POD) and polyphenol oxidase (PTO), were significant predictors of disease caused by a baculovirus in Heliothis virescens fed on either cotton or lettuce; POD was the more influential of the two enzymes. The higher the plant phenolase activity, the lower the percent mortality and the slower the insects died from viral infection. Whether a particular class of phenolic substrates was correlated with enhanced or attenuated baculoviral disease depended upon context, i.e., admixture. Diminution of viral efficacy by plant oxidative activity may compromise the compatibility of baculoviruses with other components of an integrated pest management system such as host plant resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahmad, S. 1995. Oxidative Stress and Antioxidant Defenses in Biology. Chapman & Hall, New York.

    Google Scholar 

  • Appel, H. M. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19:1521–1551.

    Google Scholar 

  • Appel, H. M. 1994. The chewing herbivore gut lumen: Physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens, pp. 209–223, in E. A. Bernays (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Appel, H. M., and Schultz, J. C. 1992. Activity of phenolics in insects: The role of oxidation, pp. 609–620, in R. W. Hemingway and P. E. Laks (eds.). Plant Polyphenols. Plenum Press, New York.

    Google Scholar 

  • Armitage, P., and Berry, G. 1994. Statistical Methods in Medical Research, 3rd ed. Blackwell Scientific Publications, Oxford, 620 pp.

    Google Scholar 

  • Ayers, M. D., Howard, S. C., Kuzio, J., Lopezferber, M., and Possee, R. D. 1994. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605.

    Article  PubMed  Google Scholar 

  • Bi, J. L., Felton, G. W., and Mueller, A. J. 1994. Induced resistance in soybean to Helicoverpa zea: Role of plant protein quality. J. Chem. Ecol. 20(1):183–198.

    Google Scholar 

  • Bi, J. L., Murphy, J. B., and Felton, G. W. 1997. Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J. Chem. Ecol. 23:95–115.

    Google Scholar 

  • Bonning, B. C., and Hammock, B. D. 1992. Development and potential of genetically engineered viral insecticides. Biotech. Gen. Eng. News 10:455–489.

    Google Scholar 

  • Bonning, B. C., and Hammock, B. D. 1996. Development of recombinant baculoviruses for insect control. Annu. Rev. Entomol. 41:191–210.

    PubMed  Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  Google Scholar 

  • Broadway, R., Duffey, S. S., Pearce, G., and Ryan, C. A. 1986. Plant proteinase inhibitors: A defense against herbivorous insects. Entomol. Exp. Appl. 41:33–38.

    Google Scholar 

  • Bryant, J. P., Tuomi, J., and Niemala, P. 1988. Environmental constraint of constitutive and long-term inducible defenses in woody plants, pp. 367–389, in K. Spencer (ed.). Chemical Mediation of Coevolution. Pergammon Press, New York.

    Google Scholar 

  • Butt, V. S. 1981. Direct oxidases and related enzymes, pp. 81–123, in P. K. Stumpf and E. E. Conn (eds.). The Biochemistry of Plants: A Comprehensive Treatise. Academic Press, New York.

    Google Scholar 

  • Butt, V. S., and Lamb, J. C. 1981. Oxygenases and the metabolism of plant products, pp. 627–655, in P. K. Stumpf and E. E. Conn. (eds.). The Biochemistry of Plants. A Comprehensive Treatise, Secondary Plant Products. Academic Press, New York.

    Google Scholar 

  • Chaves, N., Escudero, J. C., and Gutierrez-Merino, C. 1997. Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J. Chem. Ecol. 23:579–603.

    Google Scholar 

  • Collett, D. 1994. Modelling Survival Data in Medical Research. Chapman and Hall, London.

    Google Scholar 

  • Duffey, S. S., and Stout, M. J. 1996. Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol. 32:3–37.

    Google Scholar 

  • Duffey, S. S., Hoover, K., Bonning, B. C., and Hammock, B. D. 1995. The impact of host-plant on the efficacy of baculoviruses, pp. 137–275. in M. Roe and R. Kuhr (eds.). Reviews in Pesticide Toxicology. CTI Toxicology Communications, Raleigh, North Carolina.

    Google Scholar 

  • Ebihara, T. 1966. Effect of mulberry leaf quality on resistance of silkworm to a cytoplasmic polyhedrosis virus. Rep. Ibaraki Seric. Exp. Stn. 1:61–68.

    Google Scholar 

  • Englard, S., and Seifter, S. 1986. The biochemical functions of ascorbic acid Annu. Rev. Nutr. 6:364–406.

    Google Scholar 

  • Farrar, R. R., Jr., Martin, P. A. W., and Ridgway, R. L. 1996. Host plant effects on activity of Bacillus thuringiensis against gypsy moth (Lepidoptera: Lymantriidae) larvae. Environ. Entomol. 25:1215–1223.

    Google Scholar 

  • Felton, G. W. 1995. Oxidative stress of vertebrates and invertebrates, pp. 356–434, in S. Ahmad (ed.). Oxidative Stress and Antioxidant Defenses in Biology. Chapman & Hall, New York.

    Google Scholar 

  • Felton, G. W., and Duffey, S. S. 1990. Inactivation of a baculovirus by quinones formed in insect-damaged plant tissue. J. Chem. Ecol. 16:1211–1236.

    Google Scholar 

  • Felton, G. W., and Summers, C. B. 1995. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29:187–197.

    PubMed  Google Scholar 

  • Felton, G. W., Duffey, S. S., Vail, P. V., Kaya, G. K., and Manning, J. 1987. Interaction of nuclear polyhedrosis virus with catechols: Potential incompatibility for host-plant resistance against noctuid larvae. J. Chem. Ecol. 13:947–957.

    Google Scholar 

  • Felton, G. W., Donato, K. K., Del Vecchio, R. J., and Duffey, S. S. 1989. Activation of plant polyphenol oxidases by insect feeding reduces the nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15:2667–2694.

    Google Scholar 

  • Felton, G. W., Donato, K. K., Broadway, R. M., and Duffey, S. S. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore. J. Insect Physiol. 38:277–285.

    Google Scholar 

  • Forschler, B. T., Young, S. Y., and Felton, G. W. 1992. Diet and the susceptibility of Helicoverpa zea (Noctuidae: Lepidoptera) to a nuclear polyhedrosis virus. Environ. Entomol. 21:1220–1223.

    Google Scholar 

  • Frei, B., England, L., and Ames, B. N. 1989. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. U.S.A. 86:6377–6381.

    PubMed  Google Scholar 

  • Golan-Goldhirsh, A., and Whitaker, J. R. 1984. Relation between structure of polyphenol oxidase and prevention of browning, pp. 437–456, in M. Friedman. (ed.). Nutritional and Toxicological Aspects of Food Safety. Plenum Press, New York.

    Google Scholar 

  • Hagerman, A. E., and Butler, L. G. 1980. Condensed tannin purification and characterization of tannin associated proteins. J. Agric. Food Chem. 28:947–952.

    PubMed  Google Scholar 

  • Hayashiya, K., Nishida, J., and Matsubara, F. 1968. Inactivation of nuclear polyhedrosis virus in the digestive juice of silkworm larvae, Bombyx mori L. I. Comparison of anti-viral activities in the digestive juice of larvae reared on natural and artificial diets. Jpn. J. Entomol. Zool. 12:189–193.

    Google Scholar 

  • Hayashiya, K., Nishida, J., and Uchida, Y. 1976. The mechanism of the formation of the red fluorescent protein in the digestive juice of the silkworm larvae. The formation of chlorophyllidae-a. Jpn. J. Appl. Entomol. Zool. 20:37–43.

    Google Scholar 

  • Hedin, P. A., Jenkins, J. N., and Parrott, W. L. 1992. Evaluation of flavonoids in Gossypium arboreum (L.). cottons as potential source of resistance to tobacco budworm. J. Chem. Ecol. 18(2):105–114.

    Google Scholar 

  • Heinz, K. M., McCutchen, B. F., Herrmann, R., Parrella, M. P., and Hammock, B. D. 1995. Direct effects of recombinant nuclear polyhedrosis viruses on selected nontarget organisms. J. Econ. Entomol. 88:259–264.

    PubMed  Google Scholar 

  • Ho, C.-T., Lee, C. Y., and Huang, M.-T. 1992. Phenolic Compounds in Food and Their Effects on Health I: Analysis, Occurrence, & Chemistry. American Chemical Society, Washington, DC, 338 pp.

    Google Scholar 

  • Hoover, K., Schultz, C. M., Lane, S. S., Bonning, B. C., McCutchen, B. F., Duffey, S. S., and Hammock, B. D. 1995. Reduction in damage to cotton plants by a recombinant baculovirus that knocks moribund larvae of Heliothis virescens off the plant. Biol. Control 5:419–426.

    Google Scholar 

  • Hoover, K., Bonning, B. C., Lane, S. S., Schultz, C. M., Hammock, B. D., and Duffey, S. S. 1996. Effects of diet age and streptomycin on virulence of Autographa californica M nucleopolyhedrovirus against the tobacco budworm. J. Invert. Pathol. 69:46–50.

    Google Scholar 

  • Huang, M.-T., and Ferraro, T. 1992. Phenolic compounds in food and cancer prevention, pp. 8–34, in M.-T. Huang, C.-T. Ho and C. Y. Lee (eds.). Phenolic Compounds in Food and Their Effects on Health II: Antioxidants and Cancer Prevention. ACS Symposium Series 507. American Chemical Society, Washington, DC.

    Google Scholar 

  • Huang, M.-T., Ho, C.-T., and Lee, C. Y. 1992. Phenolic Compounds in Food and Their Effects on Health II: Antioxidants and Cancer Prevention. American Chemical Society, Washington, DC, 402 pp.

    Google Scholar 

  • Hughes, P. R., van Beek, N. A. M., and Wood, H. A. 1986. A modified droplet feeding method for rapid assay of Bacillus thuringiensis and baculoviruses in noctuid larvae. J. Invertebr. Pathol. 48:187–192.

    Google Scholar 

  • Hunter, M. D., and Schultz, J. C. 1993. Induced plant defenses breached? Phytochemical induction protects an herbivore from disease. Oecologia 94:195–203.

    Google Scholar 

  • Johnson, K. S., and Felton, G. W. 1996. Physiological and dietary influences on midgut redox conditions in generalist lepidopteran larvae. J. Insect Physiol. 42:191–198.

    Google Scholar 

  • Jones, C. G., Hare, J. D., and Compton, S. J. 1989. Measuring plant protein with the Bradford assay: Evaluation and standard method. J. Chem. Ecol. 15:979–992.

    Google Scholar 

  • Kalbfleisch, J. D., and Prentice, R. L. 1980. The Statistical Analysis of Failure Time Data. Wiley, New York.

    Google Scholar 

  • Karban, R. 1987. Environmental conditions affecting the strength of induced resistance against mites in cotton. Oecologia 73:414–419.

    Google Scholar 

  • Keating, S. T., and Yendol, W. G. 1987. Influence of selected host plants on gypsy moth (Lepidoptera: Lymantriidae) larval mortality caused by a baculovirus. Environ. Entomol. 16:459–462.

    Google Scholar 

  • Keating, S. T., Yendol, W. G., and Schultz, J. C. 1988 Relationship between susceptibility of gypsy moth larvae (Lepidoptera: Lymantriidae) to a baculovirus and host-plant constituents. Environ. Entomol. 17:942–958.

    Google Scholar 

  • Keating, S. T., McCarthy, W. J., and Yendol, W. G. 1989. Gypsy moth (Lymantria dispar) larval susceptibility to a baculovirus affected by selected nutrients, hydrogen ions (pH), and plant allelochemicals in artificial diets. J. Invertebr. Pathol. 54:165–174.

    Google Scholar 

  • Keating, S. T., Hunter, M. D., and Schultz, J. C. 1990. Leaf phenolic inhibition of gypsy moth nuclear polyhedrosis virus: Role of polyhedral inclusion body aggregation. J. Chem. Ecol. 16:1445–1457.

    Google Scholar 

  • Lane, H. C., and Schuster, M. F. 1981. Condensed tannins of cotton leaves. Phytochemistry 20:425–427.

    Google Scholar 

  • Mayer, A. M. 1987. Polyphenol oxidases in plants-recent progress. Phytochemistry 26:11–20.

    Article  Google Scholar 

  • McCutchen, B. F., Choudary, P. V., Crenshaw, R., Maddox, D., Kamita, S. G., Palekar, N., Volrath, S., Hammock, B. D., and Maeda, S. 1991. Development of a recombinant baculovirus expressing an insect-selective neurotoxin: potential for pest control. Bio/Technology 9:848–852.

    PubMed  Google Scholar 

  • McCutchen, B. F., Herrmann, R., Heinz, K. M., Parrella, M. P., and Hammock, B. D. 1996. The effects of recombinant baculoviruses on a non-target insect: An endoparasitoid of Heliothis virescens. Biol. Control 6:45–50.

    Google Scholar 

  • McEvily, A. J., Iyengar, R., and Gross, A. T. 1992. Inhibition of polyphenol oxidase by phenolic compounds, pp. 318–325, in C.-T. Ho, C. Y. Lee, and M.-T. Huang (eds.). Phenolic Compounds in Food and Their Effects on Health I: Analysis, Occurrence, and Chemistry. ACS Symposium Series 506. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Miller, L. K. 1995. 1994 Founders lecture: Genetically engineered insect virus pesticides: Present and future. J. Invertebr. Pathol. 65:211–216.

    PubMed  Google Scholar 

  • Neter, J., Wasserman, W., and Kutner, M. H. 1990. Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs, 3rd ed. Richard D. Irwin, Homewood, Illinois.

    Google Scholar 

  • Pierpoint, W. S. 1983. Reactions of phenolic compounds with proteins, and their relevance to the production of leaf protein, pp. 235–267, in L. Telek and H. D. Graham (eds.). Leaf Protein Concentrates. Avi Publ. Westport, Connecticut.

  • Robak, J., and Gryglewski, R. J. 1988. Flavanoids are scavengers of superoxide anions. J. Biochem. Pharmacol. 37:837–841.

    Google Scholar 

  • Robinson, D. S. 1991. Peroxidases and catalases in foods, pp. 1–47, in D. S. Robinson and N. A. M. Eskin (eds.). Oxidative Enzymes in Foods. Elsevier Applied Science, London.

    Google Scholar 

  • Ryan, J. D., Gregory, P., and Tingey, W. M. 1982. Phenolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry 21(8):1185–1187.

    Google Scholar 

  • Schultz, J. C., and Keating, S. T. 1991. Host-plant-mediated interactions between the gypsy moth and a baculovirus, pp. 489–530, in Microbial Mediation of Plant-Herbivore Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Singleton, V. L. 1987. Oxygen with phenols and related reactions in musts, wines, and model systems: Observations and practical implications. Am. J. Enol. Vittic. 38:69–77.

    Google Scholar 

  • Singleton, V. L., and Rossi, J. A., Jr. 1965. Colorimetry of total phenolics with phosphomolyb-dicphosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144–158.

    Google Scholar 

  • Sosa-Gomez, D. R., Alves, S. B., and Marchini, L. C. 1991. Variation in the susceptibility of Bombyx mori L. to nuclear polyhedrosis virus when reared on different mulberry genotypes. J. Appl. Entomol. 111:318–320.

    Google Scholar 

  • Steel, R. G. D., and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. McGraw-Hill, New York, 633 pp.

    Google Scholar 

  • Stipanovic, R. D., Altman, D. W., Begin, D. L., and Benedict, G. A. 1988. Terpenoid aldehydes in upland cottons: Analysis by aniline and HPLC methods. J. Agric. Food Chem. 36:509–515.

    Google Scholar 

  • Stout, M. J., and Duffey, S. S. 1996. Characterization of induced resistance in tomato plants. Entomol. Exp. Appl. 79:273–283.

    Google Scholar 

  • Summers, C. B., and Felton, G. W. 1994. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant antiherbivore chemistry. Insect Biochem. Mol. Biol. 24:943–953.

    Google Scholar 

  • Uchida, Y., Kawamoto, F., Himeno, M., and Hayashiya, K. 1984. A virus-inactivating protein isolated from the digestive juice of the silkworm, Bombyx mori. J. Invertebr. Pathol. 43:182–189.

    Google Scholar 

  • Vlak, J. M., and Rohrmann, G. F. 1985. The nature of polyhedrin, pp. 489–542, in K. Maramorosch and K. E. Sherman (eds.). Viral Insecticides for Biological Control. Academic Press, Orlando.

    Google Scholar 

  • Watanabe, H. 1987. The host population, pp. 71–112, in J. R. Fuxa and Y. Tanada (eds.). Epizootiology of Insect Diseases. John Wiley & Sons, New York.

    Google Scholar 

  • Watanabe, H., Nagata, M., and Wang, Y. 1990. The effect of protein content of an artificial diet on protease and antiviral activities of the gut juice of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 25:150–152.

    Google Scholar 

  • Whitt, M. A., and Manning, J. S. 1987. Role of chelating agents, monovalent anion and cation in the dissociation of Autographa californica nuclear polyhedrosis virus occlusion body. J. Invertebr. Pathol. 49:61–69.

    Google Scholar 

  • Whitt, M. A., and Manning, J. S. 1988. A phosphorylated 34–kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. Virology 163:33–42.

    PubMed  Google Scholar 

  • Young, S. Y., Yang, J. G., and Felton, G. W. 1995. Inhibitory effects of dietary tannins on the infectivity of a nuclear polyhedrosis virus to Helicoverpa zea (Noctuidae: Lepidoptera). Biol. Control 5:145–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoover, K., Yee, J.L., Schultz, C.M. et al. Effects of Plant Identity and Chemical Constituents on the Efficacy of a Baculovirus Against Heliothis virescens . J Chem Ecol 24, 221–252 (1998). https://doi.org/10.1023/A:1022576207506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022576207506

Navigation