Skip to main content
Log in

Antibacterial Peptides Are Present in Chromaffin Cell Secretory Granules

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Antibacterial activity has recently been associated with the soluble matrix of bovine chromaffin granules. Furthermore, this activity was detected in the contents secreted from cultured chromaffin cells following stimulation.

2. The agents responsible for the inhibition of Gram+ and Gram− bacteria growth are granular peptides acting in the micromolar range or below. In secretory granules, these peptides are generated from cleavage of chromogranins and proenkephalin A and are released together with catecholamines into the circulation.

3. Secretolytin and enkelytin are the best characterized; these two peptides share sequence homology and similar antibacterial activity with insect cecropins and intestinal diazepam-binding inhibitor. For some of the peptides derived from chromogranin A, posttranslational modifications were essential since antibacterial activity was expressed only when peptides were phosphorylated and/or glycosylated.

4. The significance of this activity is not yet understood. It may be reminiscent of some primitive defense mechanism or may serve as a first barrier to bacteria infection during stress, as these peptides are secreted along with catecholamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aardal, S., and Helle, K. B. (1992). The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Reg. Peptides 41:9–18.

    Google Scholar 

  • Aardal, S., Helle, K. B., Elsayed, S., Reed, R. K., and Serck-Hanssen, G. (1993). Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. J. Neuroendocrinol. 5:405–412.

    Google Scholar 

  • Bergey, E. J., Levine, M. J., Reddy, M. S., Bradway, S. D., and Al-Hashimi, I. (1986). Use of the photoaffinity cross-linking agent N-hydroxysuccinimidyl-4-azidosalicylic acid to characterize salivary-glycoprotein-bacterial interactions. Biochem. J. 234:43–48.

    Google Scholar 

  • Bevins, C. L., and Zasloff, M. (1990). Peptides from frog skin. Annu. Rev. Biochem. 59:473–507.

    Google Scholar 

  • Boarder, M. R., Erdelyi, E., and Barchas, J. D. (1982). Opioid peptides in human plasma: Evidence for multiple forms. J. Clin. Endocrinol. Metab. 54:715–720.

    Google Scholar 

  • Boman, H. G. (1994). Cecropins: Antibacterial peptides from insects and pigs. In Hoffmann, J. A., Janeway, C. A., and Natori, S. (eds.), Phylogenetic Perspectives in Immunity: The Insect Host Defense, R. G. Landes, Austin, pp. 3–17.

    Google Scholar 

  • Boman, H. G., Nilsson, I., and Rasmuson, B. (1972). Inducible antibacterial defense system in Drosophila. Nature 237:232–235.

    Google Scholar 

  • Brey, P. T., Lee, W. J., Yamakawa, M., Koizumi, Y., Perrot, S., François, M., and Zashida, M. (1993). Role of the integument in insect immunity: Epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc. Natl. Acad. Sci. USA 90:6275–6279.

    Google Scholar 

  • Browning, M. D., Huganir, R., and Greengard, P. (1985). Protein phosphorylation and neuronal function. J. Neurochem. 45:11–23.

    Google Scholar 

  • Bulet, P., Hegy, G., Lambert, J., Van Dorsselaer, a., Hoffmann, J. A., and Hetru, C. (1995). Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycans necessary for biological activity. Biochem. Wash. 34:7394–7400.

    Google Scholar 

  • Casteels, P., Ampe, C., Jacobs, F., Vaeck, M., and Tempst, P. (1989). Apidaecins: Antibacterial peptides from honeybees. EMBO J. 8:2387–2391.

    Google Scholar 

  • Casteels, P., Ampe, C., Riviere, L., Van Damme, J., Elicone, C., Fleming, M., Jacobs, F., and Tempst, P. (1990). Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187:381–386.

    Google Scholar 

  • Cociancich, S., Dupont, A., Hegy, G., Lanot, R., Holder, F., Hetru, C., Hoffman, J. A., and Bulet, P. (1994). Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J. 300:567–575.

    Google Scholar 

  • Côté, A., Doucet, J. P., and Trifaro, J. M. (1986). Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation. Neuroscience 19:629–645.

    Google Scholar 

  • Dillen, L., Boel, S., De Potter, W., and Claeys, M. (1992). Mass spectrometric characterization of bovine chromaffin granule peptides related to chromogranin B. Biochim. Biophys. Acta 1120:105–112.

    Google Scholar 

  • Dillen, L., Miserez, B., Claeys, M., Aunis, D., and De Potter, W. (1993). Post-translational processing of proenkephalins and chromogranins/secretogranins. Neurochem. Int. 22:315–352.

    Google Scholar 

  • El Majdoubi, M., Metz-Boutigue, M. H., Garcia-Sablone, P., Theodosis, D. T., and Aunis, D. (1996). Immunocytochemical localization of chromogranin A (CGA) in normal and stimulated hypothalamo-neurohypophysial system of the rat. J. Neurocytol. 25:405–416.

    Google Scholar 

  • erickson, J. D., Lloyd, R., Trojanowski, J. Q., Iacangelo, A., and Eiden, L. E. (1992). Sites of synthesis of chromogranins A and B in the human brain. Neuropeptides 21:239–244.

    Google Scholar 

  • Flanagan, T., Taylor, L., Poulter, L., Viveros, H., and Diliberto, E. (1990). A novel 1745-Dalton Pyroglutamyl peptide derived from chromogranin B is in the bovine adreno-medullary chromaffin vesicle. Cell. Mol. Neurobiol. 10:507–523.

    Google Scholar 

  • Fricker, L. D., and Snyder, S. H. (1982). Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized in adrenal chromaffin granules. Proc. Natl. Acad. Sci. USA 79:3886–3890.

    Google Scholar 

  • Gazit, E., Boman, A., Boman, H. G., and Shai, Y. (1995). Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochem. Wash. 34:11479–11488.

    Google Scholar 

  • Goumon, Y., Strub, J. M., Monniate, M., Nullans, G., Poteur, L., Hubert, P., Van Dorsselaer, A., Aunis, D., and Metz-Boutigue, M. H. (1996). The C-terminal proenkephalin-A diphosphorylated peptide (209–237) from adrenal medullary chromaffin granules possesses antibacterial activity. Eur. J. Biochem. 235:516–525.

    Google Scholar 

  • Guidotti, A., Forchetti, C. M., Corda, M. G., Konkel, D., Bennett, C. D., and Costa, E. (1983). Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc. Natl. Acad. Sci. USA 80:3531–3535.

    Google Scholar 

  • Hara, S., and Yamakawa, M. (1995). A novel antibacterial peptide family isolated from the silkworn, Bombyx mori. Biochem. J. 310:651–656.

    Google Scholar 

  • Hook, V. Y. H., Eiden, L. E., and Brownstein, M. J. (1982). A carboxypeptidase processing enzyme for enkephalin precursors. Nature 295:341–342.

    Google Scholar 

  • Hultmark, D., Steiner, H., Rasmusson, T., and Boman, H. G. (1980). Insect immunity, purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophoracecropia. Eur. J. Biochem. 106:7–16.

    Google Scholar 

  • Kilpatrick, D. L., Lewis, R. V., Stein, S., and Udenfriend, S. (1980). Release of enkephalins and enkephalin-containing polypeptides from perfused adrenal glands. Proc. Natl. Acad. Sci. USA 77:7473–7475.

    Google Scholar 

  • Krebs, E. G., and Beavo, J. A. (1979). Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 48:923–961.

    Google Scholar 

  • Lazarus, L. H., and Attila, M. (1993). The toad, ugly and venomous, wears yet a precious jewel in its skin. Prog. Neurobiol. 41:473–507.

    Google Scholar 

  • Lee, J. Y., Boman, A., Chuanxin, S., Andersson, M., Jörnvall, H., Mutt, V., and Boman, H. G. (1989). Antibacterial peptides from pig intestine: Isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA 86:9159–9162.

    Google Scholar 

  • Liston, D., Vanderhaeghen, J. J., and Rossier, J. (1983). Presence of brain synenkephalin, a proenkephalin-immunoreactive protein which does not enkephalin. Nature 302:62–63.

    Google Scholar 

  • Liston, D., Böhlen, P., and Rossier, J. (1984a). Purification from brain of synenkephalin, the N-terminal fragment of proenkephalin. J. Neurochem. 43:335–341.

    Google Scholar 

  • Liston, D., Patey, G., Rossier, J., Verbanck, P., and Vanderhaeghen, J. J. (1984b). Processing of proenkephalin is tissue-specific. Science 225:734–737.

    Google Scholar 

  • Marquardt, H., Todaro, G. J., and Shoyab, M. (1986). Complete amino acid sequences of bovine and human endozepines. Homology with rat diazepam binding inhibitor. J. Biol. Chem. 261:9727–9731.

    Google Scholar 

  • Metz-Boutigue, M. H., Garcia-Sablone, P., Hogue-Angeletti, R., and Aunis, D. (1993). Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur. J. Biochem. 217:247–257.

    Google Scholar 

  • Meyer, H. E., Hoffmann-Posorke, E., Korte, H., and Heilmeyer, L. M. G. (1986). Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivity. FEBS Lett. 204:61–66.

    Google Scholar 

  • Mogensen, I. B., Schulenberg, H., Hansen, H. O., Spener, F., and Knudsen, J. (1987). A novel acyl-CoA-binding protein from bovine liver. Effect on fatty acid synthesis. Biochem. J. 241:189–192.

    Google Scholar 

  • Morley, J. E., Kay, N. E., Solomon, G. F., and Plotnikoff, N. P. (1987). Neuropeptides: Conductors of the immune orchestra. Life Sci. 41:527–544.

    Google Scholar 

  • Munoz, D. G. (1991). Chromogranin A-like immunoreactive neurites are major constituents of senile plaques. Lab. Invest. 64:826–832.

    Google Scholar 

  • Nishimura, M., Tomimoto, H., Suenaga, T., Nakamura, S., Namba, Y., Ikeda, K., Akiguchi, I., and Kimura, J. (1994). Synaptophysin and chromogranin A immunoreactivities of Lewy bodies in Parkinson's disease brains. Brain Res. 634:339–344.

    Google Scholar 

  • Simon, J. P., and Aunis, D. (1989). Biochemistry of the chromogranin A protein family. Biochem. J. 262:1–13.

    Google Scholar 

  • Stern, A. S., Jones, B. N., Shively, J. E., and Udenfriend, S. (1981). Two adrenal opioid polypeptides: Proposed intermediated in the processing of proenkephalin. Proc. Natl. Acad. Sci. USA 78:1962–1966.

    Google Scholar 

  • Strub, J. M., Garcia-Sablone, P., Looning, K., Taupenot, L., Hubert, P., Van Dorssolaer, A., Aunis, D., and Metz-Boutigue, M. H. (1995). Processing of chromogranin B in bovine adrenal medulla. Identification of secretolytin, the endogenous C-terminal fragment of residues 614–626 with antibacterial activity. Eur. J. Biochem. 229:356–368.

    Google Scholar 

  • Strub, J. M., Hubert, P., Nullans, G., Aunis, D., and Metz-Boutigue, M. H. (1996). Antibacterial activity of secretolytin, a chromogranin B-derived peptide (614–626), is correlated with peptide structure. FEBS. Lett. 379:273–278.

    Google Scholar 

  • Taupenot, L., Ciesielski-Treska, J., Ulrich, G., Chasserot-Golaz, S., Aunis, D., and Bader, M.-F. (1996). Chromogranin A triggers a phenotypic transformation and the generation of NO in brain microglial cells. Neuroscience 72:377–389.

    Google Scholar 

  • Tossi, A., Scocchi, M., Zanetti, M., Storici, P., and Gennaro, R. (1995). PMAP-37, a novel antibacterial peptide from pig myeloid cells. cDNA clining, chemical synthesis and activity. Eur. J. Biochem. 228:941–946.

    Google Scholar 

  • Watkinson, A., Young, J., Varro, A., and Docray, G. S. (1989). The isolation and chemical characterization of phosphorylated enkephalin-containing peptides from bovine adrenal medulla. J. Biol. Chem. 264:3061–3065.

    Google Scholar 

  • Wilson, I. B. H., Gavel, Y., and Von Heijne, G. (1991). Amino acid distributions around O-linked glycosylation sites. Biochem. J. 275:529–534.

    Google Scholar 

  • Winkler, H., and Fischer-Colbrie, R. (1992). The chromogranins A and B: The first 25 years and future perspective. Neuroscience 49:497–528.

    Google Scholar 

  • Yanagibashi, K., Ohno, Y., Kawamura, M., and Hall, P. F. (1988). The regulation of intracellular transport of cholesterol in bovine adrenal cells: Purification of a novel protein. Endocrinology 123:2075–2082.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metz-Boutigue, MH., Goumon, Y., Lugardon, K. et al. Antibacterial Peptides Are Present in Chromaffin Cell Secretory Granules. Cell Mol Neurobiol 18, 249–266 (1998). https://doi.org/10.1023/A:1022573004910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022573004910

Navigation